本研究提出了一种对激光粉末融合的原位监测方法。使用标准的激光光学元件,在瞄准前扫描配置中获得了粉末床的同轴高分辨率多光谱图像。可以生成整个114×114 mm粉末床的连续概述图像,检测到直径低至20 µm的物体,最大偏移量为22-49 µm。通过从405 nm到850 nm的6个不同波长捕获图像来获得多光谱信息。与已建立方法的吸光度光谱相比,这允许在线确定粉末床的吸光度,最大偏差为2.5%。对于此方法的资格,已经在粉末表面和20种不同粉末的测试上进行射线追踪模拟。这些包括不同的颗粒大小,年龄和氧化粉末。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
连接器中的 AMPHENOL ® 屏蔽同轴触点可提供屏蔽保护,在许多情况下还可提供许多应用电路所需的射频 / 微波性能。所有常用的 Amphenol 圆柱形连接器系列和许多矩形连接器均配有同轴触点。直径标准化为 4、8、12 和 16 号,因此同轴触点可与包括这些尺寸的连接器插入排列中的电源触点互换。可以容纳常用的 RG 电缆类型和各种其他商用同轴电缆。有关同轴触点性能数据,请参见第 7 页。还提供匹配阻抗 12 号同轴触点(请参见第 8 页)。与使用单独的同轴 / 屏蔽连接器相比,在连接器中使用同轴触点具有节省空间和重量以及没有交叉配接困难的优势。同轴和标准触点可在连接器内混合使用,以满足特殊信号需求。连接器本身通过所使用的垫圈和密封件提供进一步的保护和环境完整性,并且同轴接头受连接器外壳的保护。
使用金属粉末原料的基于激光的直接能量沉积 (DED) 系统被认为是一种有前途的制造方法,因为它们能够缩短生产周期并制造复杂的零件几何形状。通过在同轴注入材料并使其凝固的同时用高功率激光束产生熔池来构建组件。大规模使用 DED 的障碍在于粉末收集效率差,在这种情况下,一部分注入的粉末会逸出熔池,导致打印材料质量与供应原料质量之比下降。已经观察到混合制造机床内 DED 系统上同轴喷嘴的磨损状态会随着时间的推移降低收集效率。本研究通过将流动可视化技术应用于现场过程监控格式、实施计算流体动力学 (CFD) 模拟和沉积测试来调查这种影响。识别和分类由于磨损而导致的喷嘴几何缺陷,并通过多种计算方法证明喷嘴尖端磨损(导致轴向尖端减少)对粉末收集效率的影响。发现集料效率与粉末流直径之间存在线性相关性,导致喷嘴尖端逐渐减小至 -1 毫米时效率损失 15-20%。这些结果为进一步研究粉末进料 DED 系统的磨损效应和零缺陷制造解决方案奠定了基础。
兼容 Quadrax 和 PC 尾部 Quadrax 触点 ..........23 • Quadrax 转换和差分 Twinax 转换适配器 ....24-26 • 差分 Twinax 转换适配器 ..............27 • 微型 D-Twinax 转换适配器 .............28-30 • 插入 MIL-DTL-38999 系列 III 的布置。.......31、32 • 如何订购带 Quadrax 100 欧姆触点的 38999 系列 III。...33 • 同轴触点。......................34-37 • 匹配阻抗同轴接触 ...............38 • 同轴接触件的典型接触件安装说明 ......39 • 高频接触件(DC 至 40 GHz) ........。。。。。40 • 双轴触点。。。。。。。。。。。。。。。。。。。。。。41-43 • 三同轴触点。。。。。。。。。。。。。。。。。。。。。...44 • 同轴、双轴和三轴 PC 尾部触点 .............45-47 • 插入 MIL-DTL-38999 系列 III 模式,包含同轴、双轴和三轴触点 ...。。。。。。。。。。。。。。。。。。48-50
抽象呼吸是身体的关键生理过程,在维持人类健康中起着至关重要的作用。可穿戴压电纳米纤维的呼吸监测引起了极大的关注,因为它的自力力量,高线性,非侵入性和便利性。但是,由于其机电转换效率低,传统压电纳米纤维的敏感性有限,因此很难满足医疗和每日呼吸监测要求。在这里,我们提出了一种普遍适用的,高度敏感的压电纳米纤维,其特征在于聚偏二氟化物(PVDF)和碳纳米管(CNT)的同轴复合结构,该结构称为PS-CC。基于阐明渗透效应的增强机制,PS-CC表现出出色的感应性能,高灵敏度为3.7 V/N,快速响应时间为20 ms,用于机电转换。作为概念验证,纳米纤维的膜无缝整合到面膜中,从而促进了对呼吸状态的准确识别。在一维卷积神经网络(CNN)的协助下,基于PS-CC的智能面具可以识别呼吸道和多种呼吸模式,其分类精度高达97.8%。值得注意的是,这项工作为监测呼吸道疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用程序。
通过(TSV)技术利用同轴性通过Silicon,提出了紧凑的低通滤波器(LPF)。首先,通过分析计算,有限元方法(FEM)模拟和测量,研究了基于同轴TSV的几个电容器。其次,提出并通过FEM模拟和测量结果对基于同轴TSV的螺旋感应的电感式的公式进行了验证。最后,提出了基于基于TSV的电容器和电感器的研究,提出了基于2×4、2×5、2×6和2×7同轴TSV阵列的提议𝐿𝐶LPFS的分析模型,并且在AD和HFF中建立了等效电路模型以及在ADS和HFSS中的有限元模型(FEM)模型。LPF通过测量进行制造和验证。在建议的LPF中,同时使用同轴TSV作为电容器和电感器,这会导致更紧凑的大小。电感器的寄生能力可以帮助诱导拟议的LPF在停止带中诱导一个缺口,并提高滚动速率。
摘要:癌症是全球最严重的健康问题之一,也是第二大死亡原因,随着老龄化和人口增长,与癌症相关的问题将持续存在。在对抗癌症的斗争中,已经开发出许多疗法和抗癌药物。化疗和相关药物广泛应用于临床实践;然而,它们的应用总是伴随着严重的副作用。近年来,纳米技术改进了药物输送系统,以减少输送药物的不良反应。在不同的候选材料中,同轴电纺制备的芯鞘纳米纤维因其独特的性能而脱颖而出,包括其大的表面积、高包封率、良好的机械性能、多药负载能力以及控制药物释放动力学的能力。因此,将药物封装在同轴电纺纳米纤维中是控制和持续释放药物的理想方法。本综述总结了不同结构和药物的同轴电纺纳米纤维在各种癌症治疗中的药物输送应用。
摘要 呼吸是机体的重要生理过程,对维持人体健康起着至关重要的作用。基于可穿戴压电纳米纤维的呼吸监测因自供电、高线性、非侵入性和便捷性而受到广泛关注。但传统压电纳米纤维灵敏度有限,机电转换效率低,难以满足医疗和日常呼吸监测要求。这里我们提出了一种具有普遍适用性的高灵敏度压电纳米纤维,其特征是聚偏氟乙烯(PVDF)和碳纳米管(CNT)的同轴复合结构,记为PS-CC。在阐明渗透效应增强机制的基础上,PS-CC表现出优异的传感性能,灵敏度高达3.7 V/N,机电转换响应时间为20 ms。作为概念验证,纳米纤维膜无缝集成到面罩中,有助于准确识别呼吸状态。在一维卷积神经网络(CNN)的帮助下,基于PS-CC的智能口罩可以识别呼吸道和多种呼吸模式,分类准确率高达97.8%。值得注意的是,这项工作为监测呼吸系统疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用性。
它发生在登山者中,例如非洲人,gnetum ula等。在这里,正常的二级生长像往常一样在直立物种中进行。后来,许多cambia在皮质中越来越多地区分了一个。每个在外部形成韧皮部,内部形成木质部。如此形成的VBS是楔形的。这个VBS的环称为同轴环。同轴环被合并到正常生长环中。通常在第一个环完成后产生第二个轴向环。有时,当Co轴向环不完整时,木材称为偏心。季节性变化与同轴环的发展之间似乎没有相关性。因此,不应将其与正常生长环或年环混淆。属菌来自皮层的表皮或外层。它在外部形成软木/佩里德尔和次生皮层。