关于β受体阻滞剂消耗对冠状动脉疾病(CAD)中心肌灌注扫描诊断值鲜为人知的影响的抽象背景,我们的目的是比较在β-阻滞剂消耗过程中进行的扫描的发现以及该药物征求治疗后进行的扫描。研究了三十例可能CAD和异常心肌灌注扫描(存在可逆缺陷)的材料和方法,研究了至少3个月的β受体阻滞剂。二吡啶胺应力阶段在两次间隔内进行了两次,一次间隔约1周,一次是在所有抗血管中的和抗缺血性药物,他汀类药物和β受体阻滞剂中停用了72个小时,在研究之前再次进行了所有这些药物,除了在所有这些药物后再次进行了beta-beta-beta-beta-beta-beta-beta-beldabication。成像是使用相同的方案,放射性药物剂量和成像参数进行的。分析了三个冠状动脉灌注型软件软件,分析了三个冠状动脉灌注区域中三个冠状动脉灌注区域中的应力评分(SSS),应力休息和求和差分分数(SDS),总灌注定义(TPD),严重程度和心肌灌注缺陷的扩展。结果大多数变量,例如SSS,SDS,TPD,严重程度以及缺陷的扩展,在包括β受体阻滞剂消耗在内的两个条件和停止在压力成像之前停止β受体阻滞剂消耗之后之间存在显着差异(P <0.05)。在二比摩尔心肌灌注扫描之前停止β受体阻滞剂可以提高诊断准确性。此外,在用美托洛尔治疗的患者中,所有研究的因素,包括SSS,SDS,TPD,严重程度以及灌注缺陷的扩展,当患者在SPECT评估之前食用β受体阻滞剂时,大大降低了(P <0.05)。结论β受体阻滞剂的消耗可能导致心肌灌注缺陷的严重程度和程度降低,因此可能会降低心肌扫描的灵敏度。
1 德国卡尔斯鲁厄理工学院生物与化学系统研究所 - 生物信息处理,埃根施泰因 - 利奥波尔德港。2 德国卡尔斯鲁厄理工学院生物与化学系统研究所 - 功能分子系统,埃根施泰因 - 利奥波尔德港。3 法国南特大学,INSERM,移植与转化免疫学研究中心,UMR 1064。4 德国卡尔斯鲁厄理工学院纳米技术研究所和卡尔斯鲁厄纳米微设施 (KNMFi)。5 加拿大不列颠哥伦比亚省温哥华温哥华前列腺中心。6 英国伦敦癌症研究所。7 英国萨顿皇家马斯登 NHS 基金会。8 哈佛医学院丹娜法伯癌症研究所肿瘤内科系,马萨诸塞州波士顿。9 丹娜法伯癌症研究所功能性癌症表观遗传学中心,马萨诸塞州波士顿
摘要:Toll样受体7(TLR7)是一类模式识别受体(PRR),识别与病原体相关的元素和损害,因此是先天免疫系统的主要参与者。TLR7触发了促炎性细胞因子或I型干扰素(IFN)的释放,这对于免疫调节至关重要。越来越多的报告还强调,内体TLR7的异常激活与各种免疫相关疾病,致癌作用以及人类免疫效率病毒(HIV)的增殖有关。因此,基于小分子或寡核苷酸的有效和选择性TLR7拮抗剂的设计和开发可能为预防和管理此类疾病提供新的工具。在这篇评论中,我们提供了TLR7小分子拮抗剂的主要结构特征和治疗潜力的最新概述。提出了针对TLR7结合位点的各种杂环支架:吡唑唑喹又氧甲氨酸,喹唑啉,嘌呤,嘌呤,咪唑吡啶,吡啶酮,苯甲酰酮,吡唑吡唑吡啶/吡啶胺/吡啶?此外,引入了与生物活性和蛋白质结合模式相关的结构活性关系(SAR)研究。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2023 年 11 月 25 日发布了此版本。;https://doi.org/10.1101/2023.11.24.568596 doi:bioRxiv 预印本
由于政府政策不断促进绿色替代品对有毒石化物质的替代品,最近在开发绿色腐蚀抑制剂方面的研究工作已经加剧。当前工作的理解是开发出源自4-氨基氨基氨酸的新型绿色和可持续的腐蚀抑制剂,以有效防止在腐蚀性环境中碳钢腐蚀。重量法被用于研究4--((呋喃-2-甲基甲基)氨基)反吡啶(FAP)和4-(((((吡啶-2-基甲基)氨基)抗吡啶)抗吡啶(PAP)的敏感性钢(1 M HCl中)1 M HCl。FAP和PAP分组为量子化学计算。dft用于使用在HCl中测试的抑制剂来确定碳钢腐蚀抑制的机理。结果表明,这些经过测试的抑制剂可以有效抑制1.0 M HCl的低碳钢腐蚀。在0.0005 m时,这些抑制剂的FAP和PAP效率分别为93.3%和96.5%。这些抑制剂在低碳钢表面遵守Langmuir吸附等温线。吸附能量的值,表明FAP遵循化学和物理吸附。
[1] B. J. Kullberg,M。C。Arendrup,N。Engel。J. Med。 2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。J. Med。2015,373(15),1445。 [2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J. 2017 Fungi,3,4。 [3] B. Halford,化学。 eng。 新闻2021,99,7。 [4] HH Kong,J。 A. City,2020 Science,368(6489),365。 [5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2015,373(15),1445。[2] F. Bongomin,St.Gago,R。Oladele,D。W。Denning,J.2017 Fungi,3,4。[3] B. Halford,化学。eng。新闻2021,99,7。[4] HH Kong,J。A. City,2020 Science,368(6489),365。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。 微生物。 感染。 2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。[5] R. Rajendran,L。Sherriff,A。Sherriff,A。M。Johnson,M。F。Hanson,C。Williams,C。A。A. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. Ramage,Clin。微生物。感染。2016,22(1),87。 D. R. Giaciobbe,A。E。E. [7]控制与预防。 Auris候选人。 https://www.cdc.gov/candidal/underx.html。 访问2021。 [8] J. A. Moderns,临床。 微生物。 感染。 2004,10(补充1),1。 [9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。 mycol。 2011,49(6),561。 [10] D. Maubon,C。Garnaud。 2014,40(9),1241。 [11] M. Canutonian Mass,F。GutierezRode,Infect。 dis。 2002,2(9),550。 M. C. Fisher,N。J. J. Hawkins,D。 [13]社论。 nat。 微生物。 2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2016,22(1),87。D. R. Giaciobbe,A。E。E.[7]控制与预防。Auris候选人。https://www.cdc.gov/candidal/underx.html。访问2021。[8] J.A. Moderns,临床。微生物。感染。2004,10(补充1),1。[9] M. W. Pound,M。L。Townsend,V。Dimondy,D。Wilson,R。H。Drew,Med。mycol。2011,49(6),561。[10] D. Maubon,C。Garnaud。2014,40(9),1241。[11] M. Canutonian Mass,F。GutierezRode,Infect。dis。2002,2(9),550。M. C. Fisher,N。J. J. Hawkins,D。[13]社论。nat。微生物。2017,2(8),17120。 [14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。2017,2(8),17120。[14] A. G. Coach,A。R。Conery,R。J。Sims,第三,Nat。修订版Discov。2019,18(8),609。 [15] E. Ferri,C。What,C。E. McKenna,Biochem。 Pharmacol。 2016,106,1。 F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。 A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2019,18(8),609。[15] E. Ferri,C。What,C。E. McKenna,Biochem。Pharmacol。2016,106,1。F. Mietton,E。Ferri,M。Champel,N。Zala,D。Maubon,Y。A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。 公社。 2017,8,15482。 [17] C. Y. Wang,P。Filipaposole,趋势生物化学。 SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.A. Kashemirov,M。Hull,M。Cornet,C。McKenna,J。Govin,C。Petosa,Nat。公社。2017,8,15482。[17] C. Y. Wang,P。Filipaposole,趋势生物化学。SCI。 2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.SCI。2015,40(8),468。 [18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。 今天,2011年,16(17 - 18),831。 [19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。 parm。 res。 2015,38(9),1686。 M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.2015,40(8),468。[18]圣卡里亚斯(St. Callias),Y. P. Chhen,Discov。今天,2011年,16(17 - 18),831。[19] St. J. Macanoin,V。Gosu,St. Hong,St. Choi,Arch。parm。res。2015,38(9),1686。M. I. Walton,P。D. Eve,A。Hayes,M。R. Valenti,A。K. Haven Brandon,G。Box,A。Hallsworth,El Smith,K。J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J. J.
氨基吡啶(APS)”,2011年9月至2012年2月。该项目基于“ 2、3、4-氨基吡啶的计算研究”。计算化学是解决有趣的化学问题的最有用工具之一。在我的研究项目中,这些AP的电荷密度及其红外频率是通过半经验,AB-Initio(Hartree Fock)和密度函数理论计算理论计算方法通过“高斯-09”软件来计算的。
这项研究致力于基于合成低分子氮的杂环化合物,硫代吡啶胺的衍生物的合成低分子杂化化合物的开发。在合成化合物的调节活性,在小麦植物的营养阶段研究了硫吡汀的衍生物。对植物生长调节活性进行了比较分析,例如生长素1-萘乙酸(NAA)和细胞分裂素N-(2-氟甲基)-7 H--吡啶-6-胺(kinetin),已知的合成化合物和诸如sod剂量的衍生物, 6-甲基-2-甲基-4-羟基苯胺(Methyur,kamethur)和新的合成化合物,例如硫代吡啶胺的衍生物。形态学参数,例如平均芽和根长(MM),10植物(G)(G)的平均生物量(G)和生化参数,例如光合色素含量(mg/g FW)。由于筛查的结果,新的合成化合物,选择了硫吡咪定的衍生物,这些衍生物在小麦植物的形态计量和生化参数上显示了与生长素Naa和cytokin kinetin kinetin或合成化合物的调节活性或超过麦芽素Naa和canteratious or inious of sod sods of SODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSODSOD, 6-甲基-2-甲基-4-羟基苯胺(Methyur,Kamethur)。讨论了新合成化合物的调节活性的激素样特异性和选择性,即硫代吡啶的衍生物对小麦生长的衍生物。对植物生长调节活性与合成化合物的化学结构(硫代吡啶胺的衍生物)之间的关系进行了分析。建议在农业产业中使用选择最高的生长素样和细胞分裂素样调节活性的硫代吡啶的衍生物,显示出最高的生长素样和细胞分裂素样调节活性。
纯眼(I类)轻度概括(II类)中等广义(III类)严重普遍性(IV类)插管/肌无力危机(V级)未知(如果GMG,初始治疗)患者是否具有疗法的日常生活(MG-ADL)分数(MG-ADL)的3或较高分数,则是非 - 巨型(MG-ADL)的症状(非 - 巨型)症状?是否(如果GMG,初始疗法)患者是否有证据表明重症肌无力的症状尚未解决?注意:未解决的症状的例子包括吞咽困难,呼吸困难或功能障碍,导致停止体育活动(例如,双视,谈话,流动性损害)。是否(如果GMG,初始治疗)患者当前接受了吡啶斯汀类药物,或者患者过去是否接受过吡啶斯汀类?是否(如果当前未接收/已收到吡啶斯蒂格敏),覆盖的替代方案是吡啶斯蒂格敏。如果您的患者尝试过这种药物,请提供药物强度,服用日期,持续多长时间,以及记录的结果是服用该药物的原因,包括患者所经历的任何不耐受或不良反应。如果您的患者没有尝试过这种药物,请提供详细信息,为什么您的患者无法尝试这种选择。