Science Advances ,2020 ,6,eaaz5961;Nature Communications ,2017 ,8,14051;2020 ,11,4329;JACS,2018 ,140,13181-13184;2020 ,142,16001-16006;Angew.Chem.Int.Ed.,2017 ,56,9018-9022;2018 ,57,1021-1024;2020 ,59,14120-14123; 2020 ,59 ,23067-23071;2021 ,133 ,2515-2522;Advanced Materials,2016 ,28 ,305-311;2016 ,28 ,8983-8989 2018 ,30 ,1707093;ACS Energy Letters,2018 ,3 ,54-62;2018 ,3 ,1443-144 9;2019 ,4 ,1579-1583;Chemical Science,2017 ,8 ,8400- 8404;2018 ,9 ,586-593; ACS Materials Letters,2019,1,594-498;2020,2,376-380;2020,2,633-638;J. Phys。Chem.Lett.2018,9,2164-2169;2019,10,5836−5840;2019,10,5923−5928;2021,12,8229–8236;Materials Science & Engineering R,2019,137,38-65;Advanced Optical Materials,2019,7,1801474; 2020 ,9,2001766;材料化学,2018 ,30,2374-2378;2020 ,32,374-380
可穿戴电子产品是一种新兴技术,它实现了日常电子设备的灵活性、可穿戴性和舒适性,可广泛应用于电子皮肤[1–4]、自供电传感器[5]和健康监测[6,7]等各种应用。尽管在开发多功能可穿戴设备方面已经取得了长足的进步,但电源仍然是一个难以解决的挑战。电池和超级电容器尽管具有良好的稳定性和效率,但仍然受到寿命、刚性、体积、封装和安全性等问题的限制。[8,9]作为未来自供电技术的潜在候选者,摩擦电和压电纳米发电机(TENG 和 PENG)能够从环境(风、雨和潮汐能)和人体运动(行走、跑步、拍手和弯肘)中获取机械能,并将其转化为电能为可穿戴设备供电。 [10–15] TENG通过摩擦起电和静电感应的耦合效应产生电能,而PENG则利用压电材料变形产生的偶极矩将机械能转化为电能。两者都是很有前途的能源技术,可以满足绿色能源和可持续发展的苛刻要求。然而,这两种技术也各有优缺点。例如,由于压电材料封装方便、结构灵活,PENG通常具有更好的电稳定性和操作灵活性,但其电输出相对较低。相反,TENG通常具有更高的电输出,但是它们的工作机制,例如垂直接触分离和横向滑动模式,需要两种不同材料的相对位移,这限制了设备的配置和应用场景。因此,一种混合型TENG和PENG能量收集器(TPENG)结合它们的优点,以获得更高的功率输出并适应不同的应用,是非常可取的。
许多常见的晶体结构可以用单个(或极少数)重复的结构模式(“单态结构”)来描述,例如立方卤化物钙钛矿中的八面体。有趣的是,最近积累的证据表明,基于这种从 X 射线衍射获得的宏观平均单态立方(Pm-3m)卤化物钙钛矿的电子结构计算与实验结果存在有趣的偏差。这些偏差包括系统性地太小的带隙、由电子主导的介电常数、合金的负混合焓以及与测量的对分布函数的显著偏差。我们在此表明,通过密度泛函理论最小化系统 T = 0 内部能量会揭示不同低对称局部模式的分布,包括倾斜、旋转和 B 原子位移(“多态网络”)。只有当允许大于最小晶胞尺寸且不几何排除低对称模式时,才会发现这种情况。随着(超)晶胞尺寸的增加,能量相对于单晶胞会降低,在包含约 32 个公式单位(⩾ 160 个原子)后稳定下来。作为无熵内部能量的非热能最小化的结果,这组相关的位移必须代表底层化学键合(孤对键合)所偏好的固有几何形状,因此其起源与分子动力学建模的正常动态热无序不同。事实上,多晶网络,而不是单晶拟设,是高温热扰动发展的核心结构。新出现的物理图像是多晶网络具有高对称性的平均结构,但局部结构基序具有低对称性。我们发现,与单晶网络相比,多晶网络的预测总能量明显较低、带隙较大、介电常数以离子为主,并且与观察到的对分布函数更为吻合。类似的多态情况见于一些立方氧化物钙钛矿的顺电相中,其中局部极化在卤化物钙钛矿中起局部位移的作用;也见于一些 3 d 氧化物的顺磁相中,其中局部自旋配置起着作用。
近十年来,卤化物钙钛矿得到了广泛的研究,部分原因是钙钛矿基太阳能电池的能量转换效率得到了前所未有的快速提高。除了太阳能电池之外,基于钙钛矿的光电器件如光电探测器和发光器件也已展示出令人印象深刻的性能,这得益于大的吸收系数、可调的带隙、缺陷容忍度和长的载流子扩散长度。尽管这些领域已经取得了重大进展,但是包括长期稳定性和铅的毒性在内的一些挑战极大地限制了它们的商业化。人们已经付出了巨大的努力,从光物理的基本理解、材料工程和性能优化等方面来解决这些长期存在的问题。本期特刊以“卤化物钙钛矿:从材料到光电器件”为主题,包括一条评论、四篇综述和五篇原创研究文章,涵盖了所有提到的主题。在本期特刊中,熊等人。来自新加坡南洋理工大学的李建军等 [1] 深入评述了基于钙钛矿的激子极化玻色-爱因斯坦凝聚态的研究现状和未来的研究方向。Koleilat 等 [2] 详细总结了维度工程包括形态工程和分子工程如何影响它们的带隙、结合能和载流子迁移率,从而影响光电探测器和太阳能电池的性能。李等 [3] 综述了二维钙钛矿中自陷激子的研究进程,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。唐等 [4] 详细评述了自陷激子在钙钛矿中的研究进展,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。 [4] 收集了钙钛矿基发光二极管的外量子效率、亮度和稳定性状态等性能矩阵,向读者简要而全面地介绍了该领域。陈等 [5] 总结了下一代硅基串联太阳能电池的可能顶部电池,并进一步提出了有希望的候选顶部电池。梅等 [6] 通过一种简单的一步滴涂法探索了前体浓度如何影响可印刷无空穴导体介观钙钛矿太阳能电池的性能;游等 [7] 通过使用无掺杂聚合物聚(3-己基噻吩-2,5-二基)(P3HT)作为空穴传输层,研究了无机钙钛矿太阳能电池的性能和热稳定性。钟等[8] 采用刮刀涂布法制备宽带隙甲脒溴化铅薄膜,并研究表面活性剂种类对基于所制备薄膜的太阳能电池性能的影响。魏等。[9] 展示了如何通过复合工程制造高效的钙钛矿基发光二极管。Mu 等人 [10] 提出了一种电晕调制装置结构,以在电子束激发下实现钙钛矿量子点中的随机激光发射。本期特刊中出现的十篇文章仅涵盖了这个快速发展的钙钛矿社区最新进展的一小部分。我们希望本期特刊能为卤化物钙钛矿社区提供有用的参考,并激发这些研究领域的更多研究。
摘要。氮化钛的应用涵盖了微电子、生物医药等不同行业。本文介绍了不同沉积条件下氮化钛薄膜的结构和光学特性分析。样品采用直流磁控溅射沉积在硅基片上。沉积在室温下进行,在预热至 300°C 的基片上进行,在分别以 -40 V 和 -90 V 极化的基片上进行。结果表明,当沉积在室温下进行时,结构取向与沉积过程存在依赖性。当沉积在预热的基片上进行时,没有结构取向。基片的负极化导致小尺寸晶体的形成。至于光学特性,薄膜表现出良好的半导体特性和低反射率。
抽象的二维(2d)/Quasi-2d有机无机卤化物钙钛矿被视为自然形成的多个量子孔,其由长的有机链分离出来的无机层,这些层被长的有机链分离出来,这些链条表现出分层结构,大激子结合能,强大的非线性光学效应,强烈的非线性光学效应,可调节的频带通过层次或化学构图,并改善了层次或化学的构图,改善了构图,并改善了稳定的构图,并改善了稳定性。长长的有机链的广泛选择endows 2d/quasi-2d perovskites具有可调电子偶联强度,手性或铁电特性。尤其是,2D/Quasi-2d Perovskites的分层性质使我们能够将它们去角质以与其他材料集成以形成异质结构,这是光电设备的基本结构单元,这将极大地扩展了2D/Quasi-2d perovskites的多样性的功能。在本文中,回顾了2D/Quasi-2d钙钛矿的最新成就。首先,引入了2D/Quasi-2d Perovskites的结构和物理性质。然后,我们讨论了基于2D/Quasi-2d钙钛矿的异质结构的构建和表征,并突出了构造的异质结构的显着光学特性。此外,2D/Quasi-2d钙钛矿的潜在应用基于光伏设备,发光设备,光电轨道/光传递器和Valleytronic设备是
气体固定式摩擦式纳米生成器(GS-Tengs)为设计自动传感器设计提供了有希望的途径。然而,GS-Tengs低电输出的内在限制可能会影响传感系统的准确性和敏感性。在这里,我们通过整合具有铁电(3,3-二氟西丁基铵)2 CUCL 4 [(DF-CBA)2 CUCL 4]填充剂的胶粘剂聚(硅氧烷 - 二苯基乙二醇 - 尿氨基烷)(PSDU)弹性剂来开发多孔复合材料。psdu,一种本质上具有交替柔软的段和超分子键的底层底层负面材料,可为复合材料赋予出色的可压缩性,粘附和自我修复特性。同时,(DF-CBA)2 CUCL 4作为功能填充剂的掺入利用氢键网络的形成来增强电荷转移过程。这些填充剂通过电动波动过程有助于电荷积累,从而使功率输出的提高超过1400倍,高于基于PSDU的密集的GS-Teng。挖掘到多孔聚(硅氧烷 - 二苯基乙酰基 - 氨基甲烷) - 玻璃盐(PSDU-PK)GS-TENGS的多功能性能上,已经证明了手势/食物识别和双模式感测系统等应用,表明它们在可耐磨性的电力和智能农业中有希望的潜在潜在的潜在潜力。
自旋电子学应用基于半金属性。这是一种新兴现象,指化合物在一个自旋通道中表现出金属性质,而在相反的自旋通道中表现出绝缘或半导体性质。6 半金属 (HM) 化合物于 1980 年被发现,在过去十年中,人们在理论和实验上对自旋注入进行了广泛的研究。7 – 12 这是一种普遍存在的现象,已在多种其他材料中观察到,包括 Heusler 合金、过渡金属氧化物和稀磁半导体 13 – 19 HM 的自旋相关独特性质为构建新型设备提供了机会,例如磁传感器和非挥发性磁性随机存取存储器,它们在自旋极化和微电子的综合作用下运行。20,21
(ad) 光学、(eh) 顶视图 SEM;(il) AFM 和 (mp) 175 微米蓝宝石上层 ITO 的导电 AFM 图像,底层 Al 2 O 3 缓冲层厚度不同:(a、e、i、m) 0 nm;(b、f、g、n) 20 nm;(c、g、k、o) 40 nm 和 (d、h、l、p) 60 nm。(a) 至 (d) 中的光学图像的比例尺为 100 μm,其他图像 (e) 至 (p) 的比例尺为 300 nm。