塞缪尔(Samuel)被安置在Uri Greenhouse和Botanical Center,在那里他支持URI Greenhouse Cost Center和Uri植物园。与URI大师园丁紧密合作,为旨在提升花园的整体教育任务的各种项目做出了贡献。他的努力增加了花园中的公众参与和学习机会。此外,塞缪尔(Samuel)为罗德岛(Rhode Island)农业社区的资源Uri Greenhouse Cost Center提供了重要的支持,协助运营需求和社区外展。塞缪尔(Samuel)的工作有助于促进该中心在支持农业部门的作用,并促进全州教育与可持续农业实践之间的联系。
粮食系统,气候变化和营养之间的复杂关系变得越来越明显。这些相互联系的Chal Lenges提出了一项艰巨的任务,但这也是一个无与伦比的协作行动机会。尽管面临挑战,但仍然有一些卡值可供玩。确实存在证据,可以实现经过证明的策略,并在我们目前缺乏的地区进行创新。,尽管我们手中可能有卡片,但却一如既往地辨别哪些有价值以及如何玩游戏可能是压倒性的。通过从最近出版物的见解(ENN,2024; FAO,2023)和网络研讨会(ANH Academy,2024a; Unnu Trition,2024)中汲取灵感,我们可以在所有噪音中重新定位自己。有一条前进的途径,即杠杆会衰老,建立伙伴关系并推动影响力的变化。
该项目使用了前瞻性食品系统框架(图1)。之所以选择此框架,是因为它考虑了系统核心的食物链以及其中的所有活动,以及一系列对食品系统运作至关重要的支持服务和机构,但可能并不总是明确包含在大多数食品系统框架中。系统图还明确强调了食品系统在人类和环境系统中的嵌入,即环境,社会经济以及食品和营养成果之间存在的反馈回路以及整体系统的驱动因素。该框架中的食品系统驱动因素被描述为“持久地改变”食物链活动的所有影响因素(Fanzo&Davis,2021年,第85页)。这些影响可以是内部的(在食品系统内)或外部(嵌入在链接的系统(例如能量或水)中)。
主角:Harry Sokol(Inserm/ap-HP),共同领导的Sylvie Claeysen(Inserm)合作伙伴:Celine Versuyft(Biobanques 2030),Yves-Edouard Herpe(BRC国家网络)(BRC国家网络),Christian Morabito(INRAE),AP-HP BARM BRC,INRAE SAMBO BRC SAMI,INRAEB BRC SAMBO SAMI的企业,来自目标
links [1] https://www.sba.unipi.it/en/renewable-gliculture-and-and-food-stems [2] https://www.sba.unipi.it/en/epen/open-access-epen-access-open-apccess- open-0/ list--0/listing-delle-delle-delle-delle-dhelle- 419 [3] [3] [3] https://www.sba.unipi.it/en/oa-tipology/gold-oa [4] https://www.sba.it/en/oapublisher/cambridge
他在农业系统中缺乏农业生物多样性,威胁着印度和非洲近30亿人民的营养安全。约有6亿小农户(其中大部分在这两个地区,生产超过三分之一的食物)是维持生物多样性,确保所有人的食品和营养安全的关键。但是,全球化的同质作用威胁到其经济可行性和对多样性的贡献。再生农业是一种基于农业多样性原则的实践,可以改善土壤健康,是解决食品和营养不安全感挑战的同时,同时提高农场生产率和收入的新兴途径。本报告研究了再生农业在确保当地粮食系统,改善生物多样性并确保获得营养食品的潜力。
在2018年,欧盟法院裁定,NGT的产品被归类为转基因生物(GMO),应根据严格的欧洲GMO立法对待。由于监管框架非常耗时和成本密集,因此只有少数大公司有资源可以从事NGT及其认可。此外,通过采用立法时,NGT尚未存在。新的欧洲委员会提案规定了将NGT工厂置于市场上的两种途径。ngt也可以自然或通过常规育种发生,并且符合该法规中规定的一组特定标准,将被视为常规工厂,并免除GMO立法要求。所有其他NGT工厂仍然需要满足现有的转基因生物立法的要求,这意味着它们受风险评估的约束,只有一旦获得监管授权,才可以投放市场。
2 patelaneri447 [at] gmail.com摘要:可持续食品系统对于应对诸如粮食安全,环境可持续性和文化保护等全球挑战至关重要。本评论探讨了人工智能(AI)和微生物在促进韩国发酵食品内的可持续性方面的交集。依靠微生物群落的传统发酵方法有助于食品保存,营养增强和降低环境影响。AI驱动的创新优化发酵过程,增强微生物分析并提高粮食生产效率。通过将AI与微生物研究相结合,食品行业可以实现精确的发酵,预测质量控制和资源有效的生产。本评论重点介绍了AI和微生物在推进可持续食品实践中的协同作用,同时保留了韩国丰富的烹饪遗产。尽管诸如技术适应和成本障碍之类的挑战,但AI的采用带来了粮食可持续性创新的重要机会。这项研究得出的结论是,接受AI增强发酵可以为子孙后代促进弹性,高效且具有重要意义的食品系统。关键词:可持续食品系统;食物中的人工智能;发酵中的微生物;韩国发酵食品;发酵优化;粮食安全与可持续性;益生菌和健康益处1。可持续食品系统可确保粮食安全和营养,同时促进和保护子孙后代的经济,社会和环境基础。引言可持续食品系统越来越被公认为是解决现代世界中一些相互联系的全球挑战的解决方案,例如气候变化,资源稀缺和人口增长。这样的系统优先考虑降低生态影响,减少食物损失以及公平获得有益健康的食物。它们对于解决越来越多的关注粮食安全,环境退化和文化保护至关重要。泡菜,doenjang(一种发酵的大豆酱)和gochujang(红辣椒酱)等食物是韩国美食的原产性,并且是来自百年历史的可持续食品的主要例子,这些实践来自数百年历史的实践,至今仍在实践。这些食物不仅是营养健康和食物保存的一部分,而且还反映了韩国的文化遗产。微生物驱动的发酵过程改善了食品风味,质地和保质期,不仅降低了对化学防腐剂的依赖,而且还降低了食物保存的能量。此外,可以重复使用发酵的副产品,从而有助于循环经济并改善环境可持续性。传统的韩国发酵食品对韩国人的饮食和文化认同非常重要。人工智能(AI)已成为优化过程和提高现代食品系统效率的变革性工具。当应用于研究发酵食品和生产的领域时,AI可以模拟可以预测发酵过程并优化资源使用的微生物相互作用。使用多种方法,例如磷 - 溶解的微生物(PSM)和生物肥料,植物生长促进
1 Department of Environment and Geography Wentworth Way, University of York, Heslington, York, YO10 5NG, United Kingdom 2 Land, Environment, Economics and Policy Institute (LEEP), University of Exeter Business School, Exeter, United Kingdom 3 School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom 4 Centre for Environmental and Agricultural Informatics, School of Water, Energy and Environment, Cranfield University, Cranfield MK43,英国5号环境科学学院,东安格利亚大学,英国诺里奇大学6个新颖的农产品中心(CNAP),生物学系,约克大学,约克大学,YO10 5DD,英国7公平王国7公平发展与疾病研究小组爱丁堡大学农业和食品系统。Charnock Bradley大楼,Easter Bush Campus,EH25 9RG。 9伦敦大学,伦敦大学,伦敦北安普顿大学,伦敦市,EC1V 0HB,英国10 hb,约克大学的商业与社会学院,11级全球可持续发展学院Charnock Bradley大楼,Easter Bush Campus,EH25 9RG。9伦敦大学,伦敦大学,伦敦北安普顿大学,伦敦市,EC1V 0HB,英国10 hb,约克大学的商业与社会学院,11级全球可持续发展学院
食品系统的方法正在受到越来越多的关注,因为它们为食品生产和供应的组织以及如何促进食品安全,环境可持续性和公平性提供了更全面的看法。虽然人们广泛认可食品系统的结构和复杂性,但努力了解其治理和可能的挑战才刚刚开始。我们通过利用多个系统治理框架的概念见解来概念化这些挑战。这些框架的概念和经验课程有助于了解处理现代全球化食品系统的关键特征时可能出现的可能挑战。这些包括跨空间和时间动态,管理跨食品系统目标的共同权衡,以及在与各种利益相关者,部门和知识社区打交道时整合叙事和政策。我们讨论了解决其中一个或多个关键特征中可能出现的挑战的含义,尤其是在新的治理范式下,现代粮食系统被嵌入,并且存在着多样化的范式和动力不对称的情况。