理解非平衡量子动力学的一个有力视角是通过其纠缠内容的时间演化。然而,除了纠缠熵的一些指导原则外,迄今为止,人们对纠缠传播的精细特性知之甚少。在这里,我们从纠缠汉密尔顿量的角度揭示了纠缠演化和信息非平衡传播的特征。我们使用最先进的数值技术结合共形场论研究了原型 Bose-Hubbard 模型的量子猝灭动力学。在达到平衡之前,发现纠缠汉密尔顿量中出现了一个电流算子,这意味着纠缠扩散是由粒子流携带的。在长时间极限下,子系统进入稳定阶段,这可以通过纠缠汉密尔顿量动态收敛到热系综的期望来证明。重要的是,稳定状态下的纠缠温度在空间上是独立的,这提供了平衡的直观特征。这些发现不仅为平衡统计力学如何在多体动力学中出现提供了重要信息,而且为从纠缠哈密顿量的角度探索量子动力学提供了工具。
随着在制造和控制由越来越多的量子比特组成的量子设备方面取得的巨大进步,我们现在进入了嘈杂中型量子技术的时代[1]。在控制不同平台上的量子自由度方面已经取得了相关进展[2-4]。然而,在某种程度上,控制这些系统动力学的真正汉密尔顿量往往(至少)部分未知。在这种情况下,最大的挑战是在物理直觉的指导下,推断出一个能够与实验数据相匹配的量子系统的真实汉密尔顿模型。通过查询设备(假设为一个黑匣子),可以测量几个可观测量的时间演变,以学习系统汉密尔顿量。这个过程被称为汉密尔顿学习,多年来一直是量子计算的基础。
量子纠缠不仅对于理解厄米多体系统起着至关重要的作用,而且对于非厄米量子系统的研究也具有重要的意义。在本文中,我们利用双正交基中的微扰理论,解析地研究了非厄米自旋梯的纠缠哈密顿量和纠缠能谱。具体来说,我们研究了耦合的非厄米量子自旋链之间的纠缠特性。在强耦合极限(J rung ≫ 1)下,一阶微扰理论表明,纠缠哈密顿量与具有重整化耦合强度的单链哈密顿量非常相似,从而可以定义一个临时温度。我们的研究结果为非厄米系统中的量子纠缠提供了新的见解,并为开发研究非厄米量子多体系统中有限温度特性的新方法奠定了基础。
相互作用的量子汉密尔顿量是量子计算的基础。时间无关的量子汉密尔顿量的基于数据的断层扫描已经实现,但一个开放的挑战是使用从一小部分自旋局部获取的时间序列测量来确定时间相关的量子汉密尔顿量的结构。物理上,自旋系统在时间相关驱动或扰动下的动态演化由海森堡运动方程描述。受这一基本事实的启发,我们阐明了一个物理增强的机器学习框架,其核心是海森堡神经网络。具体来说,我们根据基于海森堡方程的一些物理驱动损失函数开发了一种深度学习算法,该算法“强制”神经网络遵循自旋变量的量子演化。我们证明,从局部测量中,不仅可以恢复局部汉密尔顿量,而且还可以忠实地重建反映整个系统相互作用结构的汉密尔顿量。我们在各种结构的自旋系统上测试了我们的海森堡神经机。在仅从一次自旋进行测量的极端情况下,实现的断层扫描保真度值可以达到约 90%。开发的机器学习框架适用于任何时间相关系统,其量子动力学演化受海森堡运动方程控制。
1物理与电子工程学院,计算科学中心,四川师范大学,成都610068,中华人民共和国2物理学系2,香港科学技术系,北卡罗来语,九龙,香港,香港,中华人民共和国库洛恩,中华人民共和国统计局3号国际机构和统计局,加拿大41 g。量子计算,滑铁卢大学,滑铁卢N2L 3G1,加拿大安大略省5 Max-planck-institutFürQuantenoptik,Hans-Kopfermann-Str.1,85748 Garching,德国6统计学和精神科学系,沃特洛群岛,沃特洛群岛,沃特洛群岛大学,INSTARIO,INSTARIO,INSTARIO STARION INSTARIO STARION INSTARIO,加拿大大学,加拿大大学。爱荷华州,爱荷华州50011,美国8这些作者对这项工作也同样做出了贡献。
ℓ H ℓ 是任意二阶量子化费米子哈密顿量的乔丹-维格纳变换。Select ( H ) 是几种量子算法的主要子程序之一,包括最先进的哈密顿量模拟技术。如果二阶量子化哈密顿量中的每一项最多涉及 k 个自旋轨道,且 k 是与自旋轨道总数 n 无关的常数(文献中考虑的大多数量子化学和凝聚态模型都是如此,其中 k 通常为 2 或 4 ),则我们对 Select ( H ) 的实现不需要辅助量子位,并且使用 O ( n ) Cliufford+ T 门,其中 Cliufford 门应用于 O (log 2 n ) 层,T 门应用于 O (log n ) 层。与以前的工作相比,这实现了 Clifford 和 T 深度的大幅提升,同时保持了线性门数,并将辅助门数减少到零。
最近有研究表明,从吉布斯态(对应于系统处于热平衡的状态)采样是一项量子计算机有望实现超多项式加速的任务,相比经典计算机,前提是哈密顿量的局部性随着系统规模的增加而增加 [ BCL24 ]。我们扩展了这些结果,通过展示经典的采样难度并证明可以使用量子计算机有效制备此类吉布斯态,表明这种量子优势仍然适用于恒温下具有 𝑂 ( 1 ) 局部相互作用的哈密顿量的吉布斯态。特别是,我们表明即使对于 3D 晶格上的 5 局部哈密顿量,采样难度也能保持。我们还表明,当我们只能进行不完美测量时,采样难度是稳健的。
绝热量子计算机:“首先,发现(潜在复杂的)哈密顿量的基态描述了感兴趣问题的解决方案。接下来,准备一个具有简单哈密顿量的系统并初始化为基态。最后,简单的哈密顿量已成为所需的复杂哈密顿式的。通过绝热定理,系统保持基态,因此系统的状态描述了解决问题的解决方案。” (来源:https://en.wikipedia.org/wiki/quantum_annealing)
只要绝热演化的运行时间是绝热路径上任何哈密顿量的最小谱隙的倒数的多项式大,量子绝热定理就能保证计算与所需基态高度重叠 [3]。该模型得到了深入研究,不仅因为它本身很有趣,还因为它是量子退火的零温度极限。一般来说,已知绝热量子计算等同于基于标准电路的量子计算 [1]。然而,一个非常有趣的问题是,当所有哈密顿量都是“stoquatic”的,即限制为没有符号问题时,绝热量子计算的威力有多大。这意味着在某个基础上,𝐻的所有非对角线项都非正。没有符号问题的绝热量子计算包括最自然的情况,其中最终的哈密顿量是对角的,表示要优化的目标函数,初始哈密顿量由作用于每个量子位的泡利𝑋算子组成,基态是所有𝑛位串的均匀叠加。这个问题也是通过理解 D-Wave 公司实现的量子退火器的计算极限而产生的,其中所有的哈密顿量都是 stoquatic 的。Bravyi 和 Terhal [ 8 ] 证明,对于没有符号问题的无挫折哈密顿量,计算基态是经典可处理的,从而提出了一个问题,即对于没有符号问题的一般哈密顿量来说这是否也是如此。事实上,一个更有力的猜想是,量子蒙特卡罗(一种广泛用于计算凝聚态物理学的启发式方法)已经提供了一种有效的经典模拟技术。后一种可能性被 Hastings 和 Freedman [20] 的结果排除,他们证明了在此类问题上量子蒙特卡罗收敛存在拓扑障碍。对于没有符号问题的一般哈密顿量,经典可处理性问题一直悬而未决,直到 Hastings [19] 的最新突破性进展解决了这个问题,他证明了经典算法和绝热量子计算之间的拟多项式 Oracle 分离,没有符号问题。随后,Gilyén 和 Vazirani [18] 扩展并简化了 Hastings 的结果。他们证明了存在形式为 2 𝑛 𝛿 的(亚)指数 Oracle 分离
复杂量子力学系统研究中的一种常见技术是通过使用准脱位扰动理论来降低哈密顿量自由度的数量。Schrieffer – Wolff Transformation实现这一目标并构建了有效的哈密顿量,其缩放尺度是最佳的,但它仅限于两个子空间,并且有效地实施它既具有挑战性又易于错误。我们引入了一种算法,用于构建同等有效的哈密顿量和python包装Pymablock,以实现它。我们的算法结合了最佳的渐近缩放缩放和处理任何其他改进的子空间的能力。该软件包支持任何顺序的数值和分析计算,其设计为与任何其他包装互操作的用于指定哈密顿量的软件包。我们演示了如何处理构建K.P模型的包装,分析超导量子的量子,并计算大型紧密结合模型的低能规格。我们还将其性能与参考计算进行比较,并证明其效率。