14天,可能会引起不适。11此外,患有糖尿病前期和2型糖尿病的个体通常不会得到处方的CGM,但仍可能会受益于获得详细的血糖模式。因此,估计血糖偏移的非侵入性方法可能对不可选择的CGM的广泛患者有益。许多研究已经分析了葡萄糖液体是否诱导生理特征的变化。11,12最常见的方法包括电气和光学测量,例如心电图(ECG),PhotoplethySmog-raphy(PPG),近红外(NIR)光谱,电动生物防护性和皮肤温度。12中,ECG是检测葡萄糖水平的有前途的解决方案。13-16先前的研究表明,葡萄糖水平会诱导ECG QRS复合物的形态变化,例如校正的QT间隔,QT间隔和RT振幅比率的变化,17-21,心率和心率变异性的变化(HRRV)。22,23
在微型,基于芯片的平台中生成超低噪声微波和MMWave可以改变通信,雷达和传感系统1-3。利用光学参考和光学频率梳的光频分割已成为一种强大的技术,可以比其他任何方法4-7生成具有优越光谱纯度的微波。在这里,我们演示了一个微型的光频分割系统,该系统可以将方法可能传递到互补的金属 - 氧化物 - 氧化物 - 兼容兼容的集成光子平台。相位稳定性由大模式体积,基于平面波导的光学参考线圈腔8,9提供,并通过使用在波导偶联的微孔子10–12中生成的soliton microcombs将其从光学到MMWave频率分配。除了实现集成光子MMWave振荡器的记录 - 低相位噪声外,这些设备还可以与半导体激光器,放大器和光电二极管异质整合,具有大量,低尺寸的基本和大型市场应用的低尺寸生产的潜力13。
通常认为哺乳动物的阴道包含特定于位点的菌群,在生殖器和生殖健康中起着相关作用,但在女性生殖道中存在一个阴道外微生物群(即卵泡流体,输卵管,子宫内膜和胎盘)至少是一个争议的问题。该领域的许多结论未能考虑下一代测序(NGS)方法固有的技术局限性,偏见和混杂因素。虽然这在领域产生了确定性,但毫无疑问,由于其科学和实际含义,因此该主题将成为新研究工作的重点。本综述列出了当前关于女性生殖道的微生物群,特别是关于体外环境的微生物的知识中的艺术状态和差距。还讨论了肠道和口服微生物群和生殖事件之间可能的关系。©2022作者。由Elsevier Inc.出版这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
Mammalian gut microbiome and brain development: A comprehensive review Farhad Mashayekhi*, Zivar Salehi Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran * Corresponding author's Email: mashayekhi@guilan.ac.ir ABSTRACT Both internal and external environmental cues during prenatal life have been shown to play an important role in mammalian brain development.流行病学数据表明,自闭症和精神分裂症等神经发育疾病之间可能存在共同的联系,以及产前时期的微生物病原体感染。由于其广泛的表面积,肠道暴露于广泛的外部影响。通过与肠道中的有益微生物一起工作,大脑可以有效地处理每天进入肠道的大量化学信号。哺乳动物中的大多数细菌位于结肠。鉴于它们在哺乳动物体内的存在已有数百万年了,因此微生物与动物共同发展是合理的。最近的环境研究已经深入研究了微生物核脑轴的假设,以阐明肠道微生物群对哺乳动物大脑的影响。细菌细胞壁的某些成分具有穿越胎盘并到达大脑的能力。Toll样受体两种激活导致调节发育和神经发生的转录因子的表达增加。研究揭示了微生物群体控制的微生物活性产生的细胞因子的作用与神经发生过程之间的新联系。本综述探讨了肠道微生物组(GM)对哺乳动物神经发生,髓鞘形成和血脑屏障的影响。研究结果支持GM影响神经干细胞和神经发生的行为的结论,这对于哺乳动物的脑发育至关重要。此外,肠道微生物群的障碍会导致异常的神经发生和哺乳动物脑癌变。
衰老通常被认为是随机细胞损伤的结果,可以使用DNA甲基化轮廓准确地估计,这是泛组织表观遗传钟的基础。在这里,我们使用了来自哺乳动物甲基化财团的11,754个甲基化阵列,证明了普遍的泛哺乳动物时钟的发展,该甲基化阵列包括185种哺乳动物物种的59种组织类型。这些预测模型以高精度估算哺乳动物组织年龄(r> 0.96)。年龄偏差与人类死亡率风险,小鼠体形轴突变和热量限制相关。我们鉴定出具有甲基化水平的特定细胞,这些甲基化水平随着许多物种而随着年龄的增长而变化。这些位点高度富含多孔抑制性复合物2结合位置,几乎与哺乳动物发育,癌症,肥胖和寿命有关。我们的发现提供了新的证据,表明衰老在进化上是保守的,并与所有哺乳动物的发育过程交织在一起。
• 船舶周围禁区。运营商必须为地球物理调查建立一个“声学禁区”,以便在操作声源之前,该区域在一定时间内没有任何海洋哺乳动物和海龟。 • 由经过培训的第三方独立受保护物种观察员进行视觉监控。受保护物种观察员是经过培训的专业人员,他们会寻找海洋哺乳动物,以最大限度地降低船舶撞击的可能性,并在一定距离内检测到海洋哺乳动物时关闭任何声源。 • 受保护物种观察员在地球物理调查期间进行独立报告。任何与受保护物种的互动都会立即报告给 NOAA 渔业和 BOEM。
运动纤毛广泛分布于动物和植物界,表现出对其生理至关重要的复杂集体动力学。它们的协调机制尚不明确,之前的研究主要集中在藻类和原生生物上。我们在此研究脑室多纤毛细胞中纤毛摆动的牵引。对受控振荡外部流的响应表明,与主动摆动的纤毛频率相似的流动可以牵引纤毛振荡。我们发现这种牵引所需的水动力在很大程度上取决于每个细胞的纤毛数量。与最近在衣藻中观察到的情况相反,纤毛较少的细胞(最多五个)可以在与纤毛驱动流相当的流量下被牵引。实验趋势通过一个模型定量描述,该模型考虑了密集纤毛的流体动力学筛选和鞭毛摆动的化学机械能量效率。纤毛与流体动力学相互作用的最小模型的模拟显示出在纤毛中观察到的相同趋势。
摘要:近二十年来,人乳微生物组的存在已被广泛认可,许多研究研究了其与母亲和婴儿健康的组成以及关系。但是,人乳微生物群的丰富性和生存能力令人惊讶地低。鉴于哺乳动物的乳腺容纳温暖而营养丰富的环境并与外部环境接触,可能会预计哺乳动物的乳腺会含有高生物质微生物组。这种差异提出了一个问题,即牛奶中的细菌是否来自乳腺中真正的微生物定植(“居民”),还是仅仅是其他细菌来源不断涌入的结果(“游客”)。通过将动物,体外和人类研究的数据汇总在一起,本综述将研究乳腺乳腺是否被住宅微生物组定殖的问题。
精子发生是一个复杂且严格调节的过程,其中包括精子的增殖,精子分化为精子细胞,生产精子的减数分裂分裂,圆形精子成熟,精子的成熟以及高度专业的成熟精子的精子释放以及释放。这些事件中的任何一个异常都可能导致影响生育能力的精子发生障碍。精子发生障碍可能是由遗传和非遗传因素引起的,其中遗传因素占15%至30%,非遗传学占70% - 85%(O'Flynn O'Brien等,2010; Neto等,2016)。值得注意的是,作为非遗传学的环境因素对于精子发生很重要,因为男性生殖系统,尤其是精子发生似乎对环境危害特别敏感(Vecoli等,2016)。本研究主题包括七个原始文章和一项迷你审查,以增强和扩展我们对这些因素和机制的了解。精子干细胞(SSC)是最原始的生殖细胞,通过自我更新和连续分化为精子细胞,在睾丸中产生精子(Kubota and Brinster,2018),它们通过自我更新和连续分化来维持精子发生。Wu等人的研究。发现GPX3调节人类SSC的增殖和凋亡。作者表明,GPX3在人类SSC中高度表达,其敲低抑制了细胞增殖。此外,GPX3与CXCL10相互作用,并且它们的敲低表型在人类SSC系列中是一致的。结果表明GPX3和CXCL10对于SSC自我更新至关重要。有一些关于外部环境因素对SSC自我更新和分化的影响的研究。先前的研究表明,缺氧对SSC的增殖有益(Morimoto等,2021)。在此研究主题中,Gille等人。研究了缺氧如何影响SSC的增殖和分化。作者证明,当O2张力≤1%时,SSC显示出轻微的分化偏置和增殖的减少,这与Morimoto等人的结果一致。(2021)。减数分裂过程中发生了几个重要事件,包括DNA复制,染色质冷凝,DSB形成和DSB修复。这些事件不是减数分裂的独家,并且发生在体细胞周期中,并且已证明核肌动蛋白与这些事件有关。但是,没有研究来阐明核肌动蛋白和减数分裂之间的关系。在此研究主题中,Petrusová等。提供了一个迷你审查,以阐明核肌动蛋白在预言I
创伤性脑损伤(TBI)是全球主要的健康问题,越来越多地被认为是包括阿尔茨海默氏病(AD)和慢性创伤性脑病(CTE)在内的神经退行性疾病的危险因素。重复TBI(RTBI)通常在接触运动,兵役和亲密伴侣暴力(IPV)中观察到,对长期后遗症构成了重大风险。为了研究TBI和RTBI的长期后果,研究人员通常使用哺乳动物模型来概括脑损伤和神经退行性表型。然而,这些模型有几个局限性,包括:(1)长期观察期,(2)高成本,(3)关于大量哺乳动物的长时间和重复伤害的遗传操作困难和(4)(4)(4)道德问题。水生脊椎动物模型有机体,包括petromyzon Marinus(海lampreys),斑马鱼(Danio Rerio)和无脊椎动物,Caenorhabditis elegrans(C. exkelelans)和Drosophila Melanogaster(果蝇)(Drosophila Melanogaster(Drosophilla)),都是有价值的工具,可作为调查机械和r. r. r. r. r.s rytbi的工具。这些非哺乳动物模型提供了独特的优势,包括遗传障碍性,简单的神经系统,成本效益以及基于发现的快速方法和用于治疗剂的高通量筛选,从而促进了RTBI诱导的神经变性的研究和与TAU相关的病理学。在这里,我们探讨了非掌管和水生脊椎动物模型的使用来研究TBI和神经变性。果蝇特别提供了一个机会,可以探索轻度RTBI及其对内源性tau的纵向影响,从而对RTBI,Tauopathy和NeuroDegeneration之间的复杂相互作用提供了宝贵的见解。这些模型为机械研究和治疗干预提供了一个平台,最终促进了我们对与RTBI相关的长期后果以及潜在的干预途径的理解。