算法,该算法根据飞行目的地、跑道角度、机场附近飞机的空间间隔、人口分布和转向运动来考虑引导点。高度路径针对低感知噪音和低燃料消耗进行了优化,这是通过使用从该表面路径计算出的距离求解飞行纵向控制运动方程来确定的。开发了一种改进的非支配排序遗传算法 II 用于离散优化,以减少计算工作量获得最佳高度路径的帕累托前沿。通过模拟从香港国际机场飞往两个强制空中交通服务报告点的航班来演示该方法。然后将结果与快速访问记录器数据和标准仪表离场 (SID) 轨迹进行比较。虽然该方法没有考虑影响离场路径规划的某些航空运输因素,例如天气模式和空中交通组合,但得到的地面路径与 SID 轨迹非常相似。高度路径的帕累托前沿表现出燃料消耗和感知噪音水平的降低。我们还根据不同航线的相关飞行物理原理,讨论了燃料消耗和感知噪音水平之间的权衡。
图 4. 黎明时分,起重机准备在杜瓦米什河修复工地打桩。 图片来源:Sasha Ertl/Grette Associates .............................................. 8 图 5. 根据船舶自动识别系统的数据,普吉特海湾船舶交通快照。 ........................................................................................... 10 图 6. 在港口码头,起重机放置在集装箱上方,准备装船。 图片来源:Sasha Ertl/Grette Associates ............................................................. 11 图 7. 根据打桩分析的海洋哺乳动物监测区。 图片来源:西雅图港 ......................................................................................................... 14 图 8. 一名海洋哺乳动物观察员在埃利奥特湾的打桩作业期间观察受保护的海洋哺乳动物。 图片来源:Sasha Ertl/Grette Associates ............................. 15 图 9. 冲击锤在杜瓦米什河修复工地使用气泡幕打桩。图片来源:Sasha Ertl/Grette Associates .............................................................. 17 图 10. 创新型双壁桩设计图。图片来源:Marine Construction Technologies ...................................................................... 18 图 11. 双壁桩悬挂在水面上准备安装。图片来源:Reinhall 2015 .................................................................... 19 图 12. 在杜瓦米什河修复工地打入双壁桩期间的水声监测。图片来源:Sasha Ertl/Grette Associates ............................................. 20 图 13. 使用中的铲斗挖泥船。图片来源:Sasha Ertl/Grette Associates ............................................. 22 图 14. 用于开放水域监测/记录的水听器装置。图片来源:AZO Sensors ............................................................................................................. 23 图 15. 用于记录埃利奥特湾环境水下噪音的设备。图片来源:Sasha Ertl/Grette Associates ...................................................................................... 24 图 16. 艾略特湾水下环境噪音记录设备。 图片来源:Sasha Ertl/Grette Associates ...................................................................................... 25 图 17. 渔人码头的码头标识。 图片来源:西雅图港 ...................................................................... 26 图 18. WRAS 的工作原理。 图片来源:Ocean Wise ...................................................................... 27 图 19. Be Whale Wise 指导手册。 图片来源:西雅图港 ...................................................................... 28
选择需要放置在产生噪音的房间墙壁上的隔音窗帘: Sound Seal BBC-13-2 [www.soundseal.com] Illbruck Acoustic SONEX 隔音窗帘 [www.illbruck-sonex.com] McGill AirSilence Fibersorb 隔音窗帘 [www.mcgillairsilence.com] Acoustiblok、Acoustiblok-Wallcover [www.acoustiblok.com] AcoustiGuard、GenieClip、Mass Loaded Vinyl、Barrer Material、Iso-sill [www.acoustiguard.com] Kinetics Model ICC、KSCH、IsoGrid、IsoMax、PSB、Wallmat、IPRB [kineticsnoise.com] 其他:______________________________________________________________________________________________
Joanne T Levesque 说:2020 年 10 月 9 日上午 8:53 谢谢您,Mike,撰写了这篇内容丰富的文章。问:您提到了马萨诸塞州噪音法规(法规 310 CMR 7.0),但您没有提到法规定义包括以下语言……在我看来,这些语言经常被那些负责批准各种项目(包括太阳能)的人忽视,因为这样做会导致“噪音蔓延”:-“空气污染是指”周围空气空间中存在一种或多种空气污染物或其组合,其浓度和持续时间:a. 造成滋扰,或 b. 造成伤害,或根据当前信息,可能对人类健康或动物生命、植被或财产造成伤害;或 c。不合理地干扰舒适的生活和财产享受或商业行为”我想强调一下这句话:“一种或多种空气污染物或其组合:马萨诸塞州的法规是为了防止“噪音蔓延”——由于允许一个声源单独存在或不考虑已经存在的其他声源而导致社区内噪音不断升级。我们已经看到,在风力涡轮机许可方面,开发商——顾问和许可机构没有考虑空气污染定义中关于“一种或多种空气污染物或其组合”的内容。众所周知——风力涡轮机被允许使用而不考虑“一种或多种空气污染物或其组合”,结果,在一些地方,噪音水平不断上升,而这些地方本来就不应该被考虑成为这样的新噪音源,因为它们已经承受着高水平的噪音。所以问题——真的是:你的文章难道不应该扩展来解释马萨诸塞州噪音法规定义(在我看来总是被忽略)的目的是保护社区免受噪音蔓延吗?太阳能发电厂不应增加现有的噪音水平,而这些噪音水平结合起来会违反我们的空气污染保护条例?感谢您的时间和考虑,我非常喜欢这篇文章
本文所规定的信息是免费提供的,并基于Chemours认为是可靠的技术数据。Chemours不做任何明示或暗示的保证,并且与此信息的任何使用无关。本文不得将其作为在侵犯任何专利或商标的下进行操作或建议的许可。
1教育部图像处理和智能控制的主要实验室,人工智能与自动化学院,华恩科学技术大学,武汉430074,中国; 2华盛科技大学土木工程与力学学院,中国武汉430074; 3工程与信息技术学院人工智能中心,悉尼科技大学,悉尼,新南威尔士州,2007年,澳大利亚; 4美国加利福尼亚州加利福尼亚大学圣地亚哥分校神经计算学院Swartz计算神经科学中心,美国加利福尼亚州92093,美国; 5美国加利福尼亚州加利福尼亚大学圣地亚哥大学医学工程学院高级神经工程中心,美国加利福尼亚州,加利福尼亚州92093,美国和6 Zhaw Datalab,ZéurichApplied Sciences of Applied Sciences,Winterthur 8401,瑞士,
1教育部图像处理和智能控制的主要实验室,人工智能与自动化学院,华恩科学技术大学,武汉430074,中国; 2华盛科技大学土木工程与力学学院,中国武汉430074; 3工程与信息技术学院人工智能中心,悉尼科技大学,悉尼,新南威尔士州,2007年,澳大利亚; 4美国加利福尼亚州加利福尼亚大学圣地亚哥分校神经计算学院Swartz计算神经科学中心,美国加利福尼亚州92093,美国; 5美国加利福尼亚州加利福尼亚大学圣地亚哥大学医学工程学院高级神经工程中心,美国加利福尼亚州,加利福尼亚州92093,美国和6 Zhaw Datalab,ZéurichApplied Sciences of Applied Sciences,Winterthur 8401,瑞士,
超过 90% 的世界贸易是通过海上运输进行的。空气污染、温室气体 (GHG) 排放和水下辐射噪声是这种国际航运的意外副产品。航运业意识到提高能源效率和减少温室气体排放的必要性。2018 年,国际海事组织 (IMO) 通过了一项关于减少船舶温室气体排放的初步战略 1 。这证实了 IMO 致力于减少国际航运的温室气体排放,并作为紧急事项,在本世纪尽快逐步淘汰这些排放。比利时政府希望通过“可持续航运计划”(本报告附件 B 中复制)帮助船东为航运业迈向更环保、零二氧化碳和数字化的未来。该计划符合国际目标,即到 2050 年将航运业的二氧化碳 (CO 2 ) 排放量至少减少一半。除了温室气体之外,国际海事组织还采取了逐步减少氮氧化物 (NO x )、硫氧化物 (SO x ) 和颗粒物 (PM) 的方法,以防止船舶造成空气污染 2 。为了帮助保护海上野生生物,国际海事组织的工作包括减少船舶的水下噪音 3 。2014 年,国际海事组织发布了减少商业航运水下噪音的非强制性指南,以解决对海洋生物的不利影响 [IMO MEPC,2014]。理想情况下,采取减少温室气体排放的措施也会减少水下噪音,但两者之间的联系尚未得到明确证明。在比利时联邦卫生、食品链安全和环境公共服务部门 Dienst Marien Milieu (DMM) 委托的这项研究中,我们研究了减少温室气体排放以及水下噪音的方案,重点关注比利时航运船队。选择以下方法:1 概述比利时船队中的典型船型,包括货船、油轮、渔船、挖泥船和海上支援船。2 对这些典型船型的当前水下辐射噪音和排放(CO 2 、NO x 、SO x 、PM)进行全球分析。3 概述可能的排放和水下辐射噪音减少措施。4 分析减少水下船舶噪音的措施对提高能源效率和减少温室气体排放的潜在协同效益。作为本研究的第 2 部分,TNO 研究了通过所谓的北海地区“慢速航行”运营方案减少空气排放和水下噪音的潜力,在该方案中,船舶的最大速度受到限制,以节省能源并减少排放,参见 [de Jong and Hulskotte,2020]。
图 2 口孵期间接触噪音会削弱母性照料。与对照组雌性 (B) 相比,暴露在噪音中的育雏雌性 (A) 更有可能同类相食 (绿色,33%) 和过早释放 (粉色,25%) 幼崽,从而导致育雏成功率降低 (C)。暴露在噪音中的雌性也比对照组雌性保留幼崽的时间长得多 (D)。早期释放:<10 dpf;正常:10 – 14 dpf;晚期释放:>14 dpf。N = 10 只对照组雌性和 12 只噪音育雏雌性,但只有 9 只对照组雌性和 5 只噪音雌性释放幼崽进行 D 中的测量。在 (D) 中,数据点绘制为空心圆,平均值 ± SD 绘制在每个组的侧面。不同的字母表示在 p < 0.05 时具有统计学意义
摘要 — 在当今嘈杂的中尺度量子 (NISQ) 设备上运行量子程序充满挑战。许多挑战源于测量过程中的快速退相干和噪声、量子比特连接、串扰、量子比特本身以及通过门进行的量子比特状态转换产生的误差特性。量子比特不仅不是“生来平等的”,而且它们的噪声水平也会随时间而变化。据说 IBM 每天校准一次量子系统,并在校准时报告噪声水平(误差)。随后,此信息用于将电路映射到更高质量的量子比特和连接,直到下一个校准点。这项工作提供了证据,表明这个每日校准周期还有改进的空间。它提供了一种在执行一个或多个敏感电路之前立即测量与量子比特相关的噪声水平(误差)的技术,并表明即时噪声测量可以有益于后期的物理量子比特映射。通过这种即时重新校准的转译,结果的保真度比 IBM 的默认映射(仅使用其每日校准)有所提高。该框架评估了两个主要的噪声源,即读出误差(测量误差)和双量子比特门/连接误差。实验表明,使用基于应用程序执行前误差测量的即时电路映射,电路结果的准确性平均提高了 3-304%,最高可提高 400%。索引术语 — 量子计算、错误、动态编译
