缩写:AFM,原子力显微镜;冷冻em,冷冻电子显微镜; DLS,动态光散射; EV,细胞外囊泡; FTIR,傅立叶转化红外光谱; mRNA,Messenger RNA; mirna,microRNA; NGS,下一代测序; NTA,纳米颗粒跟踪分析; SDS-页,十二烷基 - 硫酸盐聚丙烯酰胺凝胶电泳; TRP,可调电阻脉冲传感。
1 荷兰乌得勒支大学医学中心 CDL 研究,乌得勒支大学,乌得勒支。2 荷兰乌得勒支大学乌得勒支药学研究所药剂学系。3 瑞典斯德哥尔摩卡罗琳斯卡医学院生物分子与细胞医学部实验室医学系。4 瑞典斯德哥尔摩卡罗琳斯卡大学医院胡丁厄细胞疗法和同种异体干细胞移植系 (CAST) 5 瑞典胡丁厄卡罗琳斯卡 ATMP 中心,ANA Futura 6 牛津大学儿科系,牛津,英国。7 英国牛津发育与再生医学研究所 (IDRM)。8 荷兰乌得勒支大学医学中心威廉敏娜儿童医院儿科呼吸医学系。 9 乌得勒支再生医学,乌得勒支大学医学中心,乌得勒支,荷兰。 * 通讯作者:ogdejong@uu.nl
Messenger RNA(mRNA)最初在1960年代初发现[1],并于1984年报告了生物活性mRNA的合成[2]。用作关键中介,mRNA用来操纵靶基因,策划蛋白质或活性物质的表达,从而在遗传信息的传播中发挥关键作用。与基于DNA的蛋白质表达技术不同,mRNA不需要穿透细胞核并避免整合到基因组中[3,4],从而减少了对安全性的关注。此外,在自发降解后,由细胞有效回收了产生的mRNA产物。与传统的疫苗相反,需要长时间的开发时间,由于抗原替代技术的简单性,mRNA疫苗具有更快的开发周期[5]。发现mRNA疗法的优势在COVID-19大流行期间特别有用,当mRNA技术为
1加拿大卡尔加里大学舒利希工程学院的制药生产研究机构,加拿大卡尔加里2500号,加拿大卡尔加里,加拿大卡尔加里。 jolene.phelps@ucalgary.ca 2卡尔加里大学舒尔希工程学院生物医学工程系,加拿大卡尔加里2500号,加拿大卡尔加里大学驱动器2500号。 hartd@ucalgary.ca(D.A.H.); Amitha@ucalgary.ca(A.P.M.)3卡尔加里大学卡明医学院麦卡格骨与联合健康研究所,加拿大卡尔加里3280 Drive N.W. 3280 Drive,AB T2N 4Z6; duncan@ucalgary.ca 4,卡尔加里大学医学院,卡尔加里大学医学院,3330 Hospital Drive N.W.,Calgary,AB T2N 4N1,加拿大5号,加拿大5家,卡尔加里大学,卡尔加里大学2500大学运动学院N.W. Universe n.w. University Drive,Calgary N.W. 29 N.W. 29号,Calgary,AB T2N 2T9,加拿大7号土木工程系,卡尔加里大学舒利希工程学院,卡尔加里大学,2500 University Drive N.W. asen@ucalgary.ca;电话。: +1-403-210-9452;传真: +1-403-220-8962
摘要:缺血性中风是全球残疾和死亡率的重要贡献者,在当前临床环境中缺乏有效的治疗方法。神经干细胞(NSC)是一种仅在神经系统内部发现的干细胞。这些细胞可以分化为各种细胞,可能在大脑被破坏的区域内再生或恢复神经网络。本综述首先提供了缺血性中风的现有治疗方法的介绍,然后检查与使用NSC治疗缺血性中风相关的承诺和限制。随后,进行了全面的概述,以综合有关在缺血性中风的背景下神经干细胞衍生的小细胞外囊泡(NSC-SEVS)移植疗法的现有文献。这些机制包括神经保护,炎症反应抑制以及内源性神经和血管再生的促进。尽管如此,NSC-SEV的临床翻译受到挑战,例如靶向功效不足和内容负载不足。鉴于这些局限性,我们已经根据当前的细胞外囊泡修饰方法来概述了利用改良的NSC-SEVS来治疗缺血性中风的进步概述。总而言之,研究基于NSC-SEVS的治疗方法预计在有关缺血性中风的基本和应用研究中都是突出的。关键词:神经干细胞,小囊泡,缺血性中风,神经保护,神经再生
稳态破坏在分子和细胞水平上可见,并且通常会导致细胞死亡。这个至关重要的过程使我们能够通过保持不同的特征(遗传,代谢,生理和个人)完整来维持更广泛的系统的完整性。有趣的是,尽管细胞可以以不同的方式死亡,但垂死的细胞仍与环境进行交流。很长一段时间以来,这种交流才被认为是由于释放可溶性因素而被视为。然而,现在已经重新考虑了对细胞外囊泡(EV)的兴趣的日益考虑,这些囊泡(EV)是在不同调节的细胞死亡程序中释放的,并且观察到了特定效应。evs是细胞范式 - 细胞通信的游戏规则改变者 - 基本研究中关于非细胞自主功能以及生物标志物研究的巨大含义,所有这些功能都针对诊断和疗法目的。本评论由两个主要部分组成。首先是对整个Evfifferd的艺术状态的全面介绍。在第二部分中,我们重点介绍被发现在不同调节的细胞死亡程序中被发现的EV,也称为细胞死亡EV
委托的供应商指南可用于支持医疗必要性和其他承保范围确定。 C IGNA 国家处方集承保范围:概述 丁苯那嗪是一种可逆性囊泡单胺转运体 2 型 (VMAT2) 抑制剂,用于治疗与亨廷顿氏病相关的舞蹈病。 1 临床疗效 有几项已发表的研究评估了丁苯那嗪治疗其他运动过度性运动障碍(例如,图雷特综合症中的抽搐和迟发性运动障碍)的疗效和安全性。 2 政策声明 此首选专业管理计划旨在鼓励使用首选产品。对于所有药物(首选和非首选),患者都必须符合标准囊泡单胺转运体 2 型抑制剂事先授权政策标准。该计划还指导患者尝试首选产品(通用四苯嗪片)。非首选产品请求也将使用例外情况进行审查
1-罗扬干细胞科学研究中心干细胞和发育生物学系德黑兰,伊朗4-美国马萨诸塞州波士顿,马萨诸塞州哈佛医学院4-美国5-澳大利亚蛋白质组分析设施,麦奎里大学,麦格理大学,新南威尔士州,澳大利亚,澳大利亚6-高级治疗治疗药物产品技术发展中心,罗伊安人科学研究中心,干细胞生物学研究所,艾伦,艾伦,艾伦,艾伦,艾伦,艾伦,艾伦,艾伦,艾伦,科学研究所。 8-澳大利亚新南威尔士州北莱德市麦格理大学的自然科学学院:隔离对MSC衍生的EV蛋白质组的隔离作用,相应的作者:Faezeh Shekari,干细胞和发育生物学系,细胞科学研究部,Royan Royan Cell Cell Institute for Stem Cell Biology and acecr,Acem forem,aciem,tehran,Tehran,iran,iran,iran,irhhem: Hosseini Salekdeh,澳大利亚新南威尔士州北莱德市麦格理大学自然科学学院。电子邮件:hosseini.salekdeh@mq.edu.au抽象的细胞外囊泡(EV)是纳米囊泡,具有脂质双层,由细胞分泌,在细胞间通信中起关键作用。随后,我们检查了EV标记表达,大小分布和形态表征,然后进行生物信息学分析。尽管有关于其诊断和治疗潜力的有希望的报告,但由于有关其货物的信息不足以及在隔离和分析方法中缺乏标准化的信息,在临床环境中对电动汽车的利用受到限制。Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on蔗糖垫子(SU)。蛋白质组结果的生物信息学分析表明,这些亚群显示出不同的
在过去的二十年中,现代智能社会见证了各种智能电动设备的广泛发展,包括可穿戴的小工具和无人机。技术进步的激增导致对可靠和高性能存储设备的需求不断增长。[1]尽管通过严格的研究和开发对电池的性能进行了显着增强,但许多电池仍然无法满足下一代储能设备的特定要求,例如灵活性,安全性和高充电率。作为具有众多优势的替代方案和有前途的候选人,超级电容器吸引了越来越多的关注。[2]纳米技术的快速演变为探索具有高功率密度和能量密度的各种超级电容器铺平了道路。其中包括利用双层机制[3]以及使用FARADIC机制的金属氧化物和基于聚合物的超级电容器的基于碳的超级电容器。[4]基于碳的超级电容器由于其高比表面积和良好的电子电导率而表现出了出色的特性。但是,由于其理论特异性低
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月22日发布。 https://doi.org/10.1101/2023.04.30.535834 doi:Biorxiv Preprint