在 COVID-19 大流行期间,健康公平成为国家和国际层面令人关注的问题。在国家层面,研究人员一直关注其国家内不同社会群体在感染水平、后果和疫苗接种方面的差异(1-14)。全球层面的主要健康公平问题之一是 COVID-19 疫苗的不公平获取,特别是在 COVID-19 疫苗开始生产后和疫苗变得充足之前的时期。全球卫生治理 (GHG) 负责协调 COVID-19 疫苗的公平分配;然而,情况并非如此(15、16)。根据 Our World in Data 网站 2022 年 4 月 7 日的数据,高收入国家 (HIC) 和中上收入国家 (UMIC) 完全接种疫苗的人数比例分别达到 74.1% 和 76.68%。相比之下,中低收入国家 (LMIC) 和低收入国家 (LIC) 的完全接种疫苗人口比例分别达到 50.51% 和 11.51%。至于部分接种疫苗的人口比例,估计高收入国家、中高收入国家、中低收入国家和低收入国家分别为 5.05%、4.77%、9.17% 和 3.26% ( 17 )。这些数字表明这些国家群体在疫苗接种方面存在差异。
全球气候模型(GCMS)模拟了全球范围内的低分辨率投影。GCM的本地分辨率通常对于社会级别的决策而言太低。为了增强空间分辨率,通常将降尺度应用于GCM输出。尤其是统计缩减技术,是一种具有成本效益的方法。与基于物理的动力学缩放相比,它们所需的计算时间要少得多。近年来,与传统统计方法相比,统计降尺度的深度学习越来越重要,证明错误率明显较低。但是,基于回归的深度学习技术的缺点是它们过度适合平均样本强度的趋势。极值通常被低估。问题上,极端事件具有最大的社会影响。我们提出了分位数回归征(QRE),这是一种受增强方法启发的创新深度学习al-gorithm。它的主要目标是通过训练分区数据集上的独立模型来避免拟合样品平均值和特殊值之间的权衡。我们的QRE对冗余模型具有鲁棒性,并且不容易受到爆炸性集成权重的影响,从而确保了可靠的训练过程。QRE达到了较低的均方误差(MSE)。尤其是,对于新西兰的高强度沉淀事件,我们的算法误差较低,突出了能够准确代表极端事件的能力。
有效的计算或Levenshtein distance是一种用于评估序列相似性的普遍指标,随着DNA存储和其他生物学应用的出现,引起了显着的关注。序列嵌入将Levenshtein的距离映射到嵌入向量之间的调用距离,已成为一种有前途的解决方案。在本文中,提出了一种基于泊松再生的新型基于神经网络的序列嵌入技术。我们首先提供了对嵌入维度对模型性能的影响的理论分析,并提出了选择适当的嵌入性识别的标准。在此嵌入维度下,通过假设托管式分离后的固定长度序列之间的levenshtein距离来引入泊松式,这自然与左环特链距离的定义相一致。此外,从嵌入距离的分布的角度来看,泊松回归大约是卡方分布的负面对数可能性,并在消除偏度方面提供了进步。通过对实际DNA存储数据的全面实验,我们证明了与最新方法相比,采用方法的出色性能。
脑死亡 (BD) 概念的理解是人死亡的意义,这是器官移植的关键,因为大多数器官捐赠者都是已经死亡并处于 BD 状态的人。然而,对这一概念缺乏理解是反对捐赠的主要原因之一,尤其是对明显死亡的恐惧。在医护人员和医学生中,对器官捐赠的态度相对积极,1-3 但仍有相当一部分人对 BD 概念缺乏充分理解。1-3 几乎所有社会群体都认为 BD 概念的知识与对器官捐赠的态度之间存在密切联系。1-4 然而,在医学生中,结果却相互矛盾。虽然一位西班牙国民
提交日期:2024年1月23日,审查日期:2024年1月26日修订日期:2024年1月27日接受日期:2024年1月29日,抽象糖尿病是一种可以攻击任何人的疾病,这种疾病发生,因为人体中糖含量过多。因此,需要预防糖尿病,以便可以尽早采取预防措施。在这项研究中,将使用随机森林算法,支持向量分类和XGBoost进行分类过程。本研究将使用一个数据集,该数据集由768个总数据组成,其分布非糖尿病数据为500,糖尿病数据的分布为268。对于测试后的分类结果,结果是,使用随机森林获得的分类为79.22%,使用使用支持矢量分类的测试精度获得了76.62%的测试精度,使用XGBoost的测试准确度使用逻辑回归的测试精度为79.22%的测试准确度为80.52%。使用逻辑回归算法时,获得最佳分类值,即精度为79.00%,召回77.00%,F1得分为78.00%。
分位数回归和条件密度估计可以揭示平均回归遗漏的结构,例如多模式和偏度。在本文中,我们引入了一个深度学习生成模型,以用于关节分位数估计,称为惩罚生成分位数回归(PGQR)。我们的方法同时生成了来自许多随机分位水平的样品,从而使我们能够在给定一组协变量的情况下推断响应变量的条件分布。我们的方法采取了一种新颖的可变性惩罚,以避免在深层生成模型中消失的可变性或记忆的问题。此外,我们引入了一个新的部分单调神经网络(PMNN),以避免穿越分位曲线的问题。PGQR的一个主要好处是,它可以使用单个优化来拟合,从而绕过需要在多个分位级别反复训练模型或使用计算上昂贵的交叉验证来调整罚款参数。我们通过广泛的模拟研究和对实际数据集的分析来说明PGQR的功效。实施我们方法的代码可在https://github.com/shijiew97/pgqr上获得。
1。Antman EM,Loscalzo J.心脏病学的精确医学。nat Rev car-diol。2016; 13(10):591-602。 2。 Kuss O,Opitz ME,Brandstetter LV,Schlesinger S,Roden M,HoyerA。 2型糖尿病治疗如何用于精密糖尿病ogy? 来自174个随机ISED试验的血糖控制数据的元回归。 糖尿病学。 2023; 66:1622-1632。 3。 Jameson JL,Longo DL。 精确医学 - 个性化,问题和有前途。 n Engl J Med。 2015; 372(23):2229-2234。 4。 Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。 精确医学:超出拐点。 SCI Transl Med。 2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2016; 13(10):591-602。2。Kuss O,Opitz ME,Brandstetter LV,Schlesinger S,Roden M,HoyerA。2型糖尿病治疗如何用于精密糖尿病ogy?来自174个随机ISED试验的血糖控制数据的元回归。糖尿病学。2023; 66:1622-1632。3。Jameson JL,Longo DL。精确医学 - 个性化,问题和有前途。n Engl J Med。2015; 372(23):2229-2234。 4。 Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。 精确医学:超出拐点。 SCI Transl Med。 2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2015; 372(23):2229-2234。4。Hawgood S,Hook-Barnard IG,O'Brien TC,Yamamoto KR。精确医学:超出拐点。SCI Transl Med。2015; 7(300):1-3。 5。 丹尼斯JM。 2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。 糖尿病。 2020; 69(10):2075-2085。 6。 Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2015; 7(300):1-3。5。丹尼斯JM。2型糖尿病中的精确药物:使用个性化预测模型来优化治疗的选择。糖尿病。2020; 69(10):2075-2085。6。Wilkinson J,Arnold KF,Murray EJ等。 现实的时间检查机器学习驱动的精密药物的承诺。 柳叶刀数字健康。 2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。Wilkinson J,Arnold KF,Murray EJ等。现实的时间检查机器学习驱动的精密药物的承诺。柳叶刀数字健康。2020; 2(12):E677-E680。 7。 Prasad RB,Groop L. 2型糖尿病中的精密药物。 J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2020; 2(12):E677-E680。7。Prasad RB,Groop L. 2型糖尿病中的精密药物。J Intern Med。 2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。J Intern Med。2019; 285(1):40-48。 8。 tsapas A,Karagiannis T,Kakotrichi P等。 降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。 糖尿病OBES METAB。2019; 285(1):40-48。8。tsapas A,Karagiannis T,Kakotrichi P等。降糖药物对2型糖尿病患者体重和血压的比较功效:系统评价和网络元分析。糖尿病OBES METAB。糖尿病OBES METAB。2021; 23(9):2116-2124。9。Blundell J,Finlayson G,Axelsen M等。每周一次的半紫鲁丁对食欲,饮食的控制,食物的控制和体重的影响。糖尿病OBES METAB。 2017; 19(9):1242-1251。 10。 Palmer SC,Mavridis D,Nicolucci A等。 比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。 JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。糖尿病OBES METAB。2017; 19(9):1242-1251。 10。 Palmer SC,Mavridis D,Nicolucci A等。 比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。 JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。2017; 19(9):1242-1251。10。Palmer SC,Mavridis D,Nicolucci A等。比较2型糖尿病患者的临床外发生和与降糖药物相关的不良事件:荟萃分析。JAMA。 2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。JAMA。2016; 316(3):313-324。 11。 Palmer SC,Tendal B,Mustafa RA等。 葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。 bmj。 2021; 372:M4573。 12。 tsapas A,Avgerinos I,Karagiannis T等。 降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。 Ann Intern Med。 2020; 173(4):278-286。2016; 316(3):313-324。11。Palmer SC,Tendal B,Mustafa RA等。葡萄糖共转运蛋白-2(SGLT-2)抑制剂和胰高血糖素样肽-1(GLP-1)受体激动剂用于2型糖尿病:随机对照试验的系统审查和网络荟萃分析。bmj。2021; 372:M4573。12。tsapas A,Avgerinos I,Karagiannis T等。降糖药物对2型糖尿病的比较有效性:系统评价和网络荟萃分析。Ann Intern Med。 2020; 173(4):278-286。Ann Intern Med。2020; 173(4):278-286。
在本文中,我们为在有依赖数据的存在下提供了过度参数深的非参数回归的统计保证。通过分解误差,我们建立了非渐近误差界限以进行深度估计,这是通过有效平衡近似和概括误差来实现的。我们得出了具有约束权重的H型函数的近似结果。此外,概括误差受重量标准的界定,允许神经网络参数编号大得多。此外,我们通过假设样品起源于具有较低内在维度的分布来解决维度诅咒的问题。在这个假设下,我们能够克服高维空间所带来的挑战。通过结合额外的错误传播机制,我们为过度参数深拟合的Q-材料提供了Oracle不等式。
发现自由糖化胺和糖化尿素是糖尿病性肾病的潜在标志物Rashdajabeen Q Shaikh Q Shaikh 1,2#,Sancharini das 1#Fernandes 2,3,Shalbha Tiwari 4,Shalbha Tiwari 4,Unikrishnan Ag 4,Unikrishnan Ag 4,Mahesh Jkulkar J Kulkar 1,2 * sci affliations 1,2 * sci affliations 1 Bio Cai affliations 1 Bio affliations 1 Bio affliations 1 Bio affliations 1 Bio affliations 1 Bio affliations 1 bio CSIR-National Chemical Laboratory,Pune-411008,印度2号科学与创新性研究学院(ACSIR),加兹阿巴德,印度201002年Ghaziabad,印度3号,CSIR-National Chemical Laboratory 3有机化学部,Pune-411008,印度411008,印度411008
给定带有测量活性标记的DNA序列的数据集(图1a),我们以一系列分类令牌(“提示令牌”)的序列编码标签,该标记已预先固定到DNA序列的开始(图1b)。我们训练或填充hyenadna模型以采用处理后的序列并以及时令牌开始执行令牌预测(图1C)。这种形式使我们能够明确地使用对模型序列的任何先验知识。一旦受过训练,就可以使用代表任何所需功能的令牌序列来提示语言模型。该模型现在以及时令牌为条件,一次生成一个DNA序列一个核苷酸(图1d)。并行,我们在同一数据集上训练一个监督的序列到活动回归模型(图1E),并将其应用于生成的序列以选择最匹配所需活动的序列(图1F)。这种合并的方法使我们可以将回归模型用作甲骨文,例如以前的模型引导的方法,而语言模型可确保生成的序列具有现实的内容。最后,我们提供了几种评估生成序列以及模型本身的方法(图1G)。