利用成簇的规律间隔短回文重复序列 (CRISPR) 技术进行基因组工程,具有从源头上明确删除过敏原基因的独特潜力。与之前的基因编辑方法相比,CRISPR 在编辑效率、通量和精度方面都有了显著的提高。CRISPR 已在镰状细胞病和 β 地中海贫血等多种临床应用中取得成功,使用 CRISPR 编辑对过敏原蛋白进行的初步敲除研究也显示出良好的前景。鉴于 CRISPR 的优势以及过敏原基因中的特定 DNA 靶标,CRISPR 基因编辑是一种可行的应对过敏的方法,可能会显著改善疾病。本综述将重点介绍 CRISPR 编辑过敏原(尤其是猫过敏原 Fel d 1)的最新应用,并将讨论该方法与现有治疗方法相比的优势和局限性。
摘要:农作物是人类赖以生存的重要农产品,在人类生活中发挥着不可或缺的作用。长期以来,育种家们一直通过传统的育种策略来提高作物的产量和品质。如今,许多育种家利用现代分子技术取得了令人瞩目的成果。最近,一种名为成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 技术的新型基因编辑系统也成功地提高了作物的品质。它因其多功能性而成为最受欢迎的作物改良工具。它凭借其在特定基因编辑方面的精确性加速了作物育种进程。本文总结了 CRISPR/Cas9 技术目前在作物品质改良中的应用,包括对各种作物外观、适口性、营养成分和其他优选性状的调节。此外,还讨论了其未来应用面临的挑战。
在高等植物中,GABA 主要通过一条称为 GABA 分流的短途径代谢,谷氨酸脱羧酶(GAD)催化谷氨酸不可逆脱羧生成 GABA 5,6。GAD 具有一个额外的 C 末端残基,称为钙调蛋白(CaM)结合结构域(CaMBD)。体外研究表明,低 pH 或 Ca 2+ /CaM 与 CaMBD 结合可刺激 GAD 活性 7,8,9。此外,转基因研究表明,去除 CaMBD 会导致植物中 GABA 积累更高 10,11,12,13。因此,人们认为在没有 Ca 2+ /CaM 的情况下,CaMBD 充当负调节/自抑制结构域,并且通过 Ca 2+ /CaM 与 CaMBD 结合可解除负调节。因此,我们的目标是通过 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 去除 CaMBD
摘要 基因组编辑技术的快速发展为治疗肿瘤、心血管、神经退行性疾病和单基因疾病带来了新的希望。最近,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已成为一种强大的基因编辑工具,与传统方法相比,具有编辑效率高、成本低等优势。人类多能干细胞 (hPSC) 具有很强的增殖和分化潜能,已被用于干细胞治疗。二十多年来,hPSC 的潜力和 CRISPR/Cas9 基因组编辑的能力一直在改变医学遗传学的范式。由于 hPSC 被归类为难以转染的细胞,因此迫切需要开发一种合适有效的方法将 CRISPR/Cas9 递送到这些细胞中。本综述重点介绍了在干细胞中递送 CRISPR/Cas9 的各种策略。
成簇随机间隔短回文重复序列 (CRISPR) 及其相关的核酸内切酶蛋白 Cas9 已被发现是细菌和古菌中的免疫系统;尽管如此,它们现在已被用作主流生物技术/分子剪刀,可以通过插入/删除、表观基因组编辑、信使 RNA 编辑、CRISPR 干扰等方式调节大量遗传和非遗传疾病。许多经食品和药物管理局批准和正在进行的 CRISPR 临床试验采用体外策略,其中基因编辑在体外进行,然后再植入患者体内。然而,CRISPR 成分的体内递送仍处于临床前监测之下。本综述总结了使用 CRISPR/Cas9 进行基因编辑的非病毒纳米递送策略及其最新进展、战略观点、挑战以及使用纳米材料进行组织特异性体内递送 CRISPR/Cas9 成分的未来方面。
成簇随机间隔短回文重复序列 (CRISPR) 及其相关的核酸内切酶蛋白 Cas9 已被发现是细菌和古菌中的免疫系统;尽管如此,它们现在已被用作主流生物技术/分子剪刀,可以通过插入/删除、表观基因组编辑、信使 RNA 编辑、CRISPR 干扰等方式调节大量遗传和非遗传疾病。许多经食品和药物管理局批准和正在进行的 CRISPR 临床试验采用体外策略,其中基因编辑在体外进行,然后再植入患者体内。然而,CRISPR 成分的体内递送仍处于临床前监测之下。本综述总结了使用 CRISPR/Cas9 进行基因编辑的非病毒纳米递送策略及其最新进展、战略观点、挑战以及使用纳米材料进行组织特异性体内递送 CRISPR/Cas9 成分的未来方面。
成簇的规律间隔短回文重复序列 (CRISPR) 基因组编辑革命开启了生命科学的新纪元。本文,我们回顾了最先进的计算在 CRISPR-Cas9 革命中的作用,从早期对低温电子显微镜数据的细化到对大规模构象转变的增强模拟。分子模拟报告了 RNA 结合的机制和具有催化能力的 Cas9 酶的形成,这与随后的结构研究一致。受单分子实验的启发,分子动力学为脱靶效应的发生提供了理论基础,而图论则揭示了变构调控。最后,使用混合量子经典方法建立了 DNA 裂解的催化机制。总体而言,分子模拟在理解 CRISPR-Cas9 的动力学和机制方面发挥了重要作用,有助于理解功能、催化、变构和特异性。
成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已成为一种成功且有前途的基因编辑技术。为了促进其有效应用,已经开发了各种计算工具。这些工具可以通过预测切割效率和特异性并排除不良靶标来帮助研究人员进行向导 RNA (gRNA) 设计过程。然而,虽然有许多工具可用,但对其应用场景和性能基准的评估却有限。此外,最近已经探索了用于 gRNA 效率预测的新深度学习工具,但尚未进行系统评估。在这里,我们讨论了与靶标活性问题有关的方法,主要关注它们利用的特征和计算方法。此外,我们在独立数据集上评估了这些工具并给出了一些使用建议。最后,我们总结了 CRISPR-Cas9 向导设计未来方向的一些挑战和观点。
摘要 :植物育种在增强植物遗传潜力方面发挥着重要作用,旨在改善植物的产量、抗病性和抗逆性等特性。本文深入分析了各种植物育种技术,包括大规模选择和杂交等传统方法,以及基因工程和 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 基因编辑等现代创新方法。对每种方法都进行了彻底分析,以评估其在作物改良方面的具体应用和成就方面的有效性、潜在应用和局限性,强调植物育种在确保粮食安全和农业可持续性方面的重要作用。通过开发高产和抗逆性作物品种,植物育种不仅可以应对气候变化带来的挑战,而且还有助于提高农业的经济可行性。植物育种方法的不断发展凸显了研究和创新对于满足全球粮食需求的重要性。
近年来,医学科学领域发生了一场革命,突破性的发现改变了我们曾经认识的医疗保健[1]。这些进步极大地改善了疾病的诊断、治疗和管理,改善了患者的治疗效果和生活质量[2-5]。这些创新包括新药物和治疗方法的创造以及尖端技术的利用。例如,成簇的规律间隔回文重复序列 (CRISPR-Cas9) 等基因编辑技术为遗传疾病开辟了新的治疗选择[6],而 mRNA 疫苗的开发为 2019 年冠状病毒病 (COVID-19) 大流行提供了急需的应对措施[7]。此外,可穿戴技术和远程医疗提高了医疗保健的可及性、便利性和个性化,而 3D 打印和纳米技术的突破使得制造个性化植入物和药物输送系统成为可能[8-10]。本文探讨了医学研究的一些最新进展以及它们如何彻底改变医疗保健服务。