越来越多的证据表明,精神疾病中大脑结构连接素异常,但因果关系仍然没有被逐渐解散。我们进行了双向两样本的孟德尔随机分析(MR)分析,以研究206个白物连通性表型(n = 26,333,UK Biobank)和13个主要精神病学疾病(n = 14,307至1,222,882)之间的因果关系。正向MR分析确定了遗传上预测的五种白质结构连通性表型对六种精神疾病的因果关系,并且关联是显着或暗示性的。例如,左 - 半球额叶控制网络与右左右默认模式网络之间的结构连通性与自闭症谱系障碍的风险显着呈负相关,而右 - 半球前层控制网络和海马型的结构连通性的增加与厌食症的厌食症和厌食症的使用显着相关。反向MR分析揭示了两种精神疾病的风险与四种不同的白色含量结构连通性表型之间的因果关系。例如,发现神经性厌食症的敏感性与左 - 半球视觉网络和粒子之间的结构连通性有显着负相关。这些发现为精神疾病的病因提供了新的见解,并突出了在大脑结构连接水平上早期检测和预防的潜在生物标志物。
本研究使用 Toda-Yamamoto 因果关系检验来检验土耳其可再生能源消费与预期寿命之间的因果关系。通过分析 1990 年至 2019 年的数据,该研究探讨了这些变量之间的关系。Toda-Yamamoto 因果关系检验的结果表明,可再生能源消费与预期寿命之间没有 Granger 因果关系,表明可再生能源消费对土耳其的预期寿命没有显著影响。然而,研究发现预期寿命与可再生能源消费之间存在 Granger 因果关系,这表明预期寿命的提高可能导致土耳其可再生能源消费的增加。这项研究意义重大,因为它提供了有关可再生能源消费与土耳其预期寿命之间关系的见解。结果强调了在检查公共卫生结果时考虑可再生能源消费以外的因素的重要性。该研究的结果可以为政策制定者提供参考,帮助他们制定优先考虑公共卫生结果和促进可持续能源实践的能源政策。
摘要数字足迹的兴起为研究领土动态(尤其是旅游城市的动态研究)创造了许多承诺和期望。这些足迹将使访客的空间实践成为可能,并弥补以城市规模缺乏这些实践的信息。因此,许多研究使用社交网络的数据来研究不同地理量表的旅游空间。这些研究基于这些数据提供了几种类型的可视化,因此可以表现并显示一个据称是新的旅游时空(从热图到仪表板),数字足迹以处理,聚集,计算和平滑为单位。所有这些转换 - 由于算法黑框而产生的,这些黑匣子不允许精确理解方法(通常是复杂且近似) - 通常不是很透明。因此,此数据的技术和不透明度使得开发了允许解构这些新映射寄存器的关键方法。基于在广泛使用的社交网络Instagram上收集的数据,我们希望通过返回数据家谱,从地图到足迹来质疑数字足迹作为一种潜在的观察旅游实践的工具。我们的方法包括回到初始数据及其相关的元数据,以探索两个基本维度,即更复杂的探索条件的条件:时间和空间。关键字:数字足迹,空间实践,旅游城市,关键数据研究。因此,我们从2016年至2018年在法国比亚里兹(Biarritz)在Instagram上发表的照片收集了一批元数据,我们按照这两个轴进行了分析。通过这项探索性研究,我们将证明该数据尽管非常丰富,但无论是在访问数据本身还是时空精度方面都会提出一定数量的限制。
金黄色葡萄球菌CAS 9(SACAS 9)是RNA引导的内核ASE,其靶向与原始探针相邻的互补DNA相邻的邻接基序(PAM)进行裂解。其小尺寸促进了体内递送的各种生物体基因组编辑。在此,使用单分子和集合方法,我们系统地研究了SACAS 9与DNA相互作用的基础机理。我们发现SACAS 9的DNA结合和裂解需要分别与指导RNA的PAM -Proximal DNA的6-和18 -bp。这些活性是由三元复合物之间的两个稳定的相互作用介导的,其中一种稳定的相互作用位于PAM的大约6 bp,而不是DNA上Sacas 9的明显足迹。值得注意的是,原始间隔物内部的另一个相互作用显着强,因此构成了DNA结合的SACAS 9持续块对DNA跟踪电动机。有趣的是,在裂解后,萨卡斯9自主释放了pAM-DESTAL DNA,同时保持与PAM的结合。这种部分DNA释放立即废除了其与原始探针DNA的强烈相互作用,因此促进了其随后与PAM的解离。总体而言,这些数据提供了对SACAS 9的动态理解,并指导其有效的应用。
摘要 — 通过神经网络实现的深度学习通过提供用于复杂任务(例如对象检测/分类和预测)的方法,彻底改变了机器学习。然而,基于深度神经网络的架构已经开始产生收益递减,这主要是由于它们的统计性质以及无法捕捉训练数据中的因果结构。深度学习的另一个问题是其高能耗,从可持续性的角度来看,这并不是那么理想。因此,人们正在考虑采用替代方法来解决这些问题,这两种方法都受到人脑功能的启发。一种方法是因果学习,它考虑到神经网络训练数据集中项目之间的因果关系。预计这将有助于最大限度地减少深度神经网络学习表示中普遍存在的虚假相关性。另一种方法是神经混沌学习,这是一项最新发展,其灵感来自生物神经网络(大脑/中枢神经系统)中神经元固有的非线性混沌放电。这两种方法都显示出比单纯使用深度学习更好的效果。为此,在本文中,我们研究了如何将因果学习方法和神经混沌学习方法整合在一起以产生更好的结果,尤其是在包含链接数据的领域。我们提出了一种这种整合的方法来增强分类、预测和强化学习。我们还提出了一组需要研究的研究问题,以使这种整合成为现实。索引术语——深度学习、因果学习、神经混沌学习、图神经网络、随机共振
新加坡是在整个大英帝国发展的广泛交易路线网络中成立的。该定居点的价值在于在欧洲/印度,中国和马来群岛之间的高度战略地位,这是在这些地理子系统中运营的商品和商人最方便的十字路口,而在亚洲荷兰人与英国之间的地理政治相互作用的背景下。的确,它的位置是新加坡增长的唯一资源(Huff 1997,7)。在19世纪初期的特定贸易和地理政治模式中,地理位置的早期优势非常重要,并以自由港口地位的补充,促进了新加坡作为大英帝国和亚洲贸易的主要群体的增长。
进化是一个以新颖性产生为标志的高度复杂的过程,这需要个人的历史和集体组织。在本文中,我们研究了生物组织与开放式进化(OEE)之间的关系,特别关注两者之间的因果关系。为了在化学系统中提供这种因果关系的定量证据,我们应用集装理论来评估自动催化集的出现如何影响Kauffman模型中的复杂性动态。在本文的第二部分中,我们通过分析最简单的自动催化设置对Kauffman模型中复杂性动力学的影响,特别是在没有参数相关性的情况下,加强了这种猜想。通过将自动催化集解释为化学系统中的组织结构,我们的发现为研究生物组织与OEE之间的因果关系提供了第一个数值支持。这项工作代表了对OEE与生物组织之间动态关系的初步研究的一个有希望的领域,并可能会促进其在理论生物学中的联系。
我们利用孟德尔随机化(MR)来评估白细胞端粒长度(LTL)和肌醇侧面硬化症(ALS)之间的因果关系以及基因组范围研究的汇总统计数据(n = 〜38,000 n = 〜38,000 for ltl and 〜31,000 for ltl and 〜81,000,欧洲人群中的ltl;我们进一步评估了脂质在从LTL到ALS的途径中的介导作用。在欧洲人群中,ALS上LTL的每标准偏差降低为1.10(95%CI 0.93-1.31,p = 0.274),在亚洲人群中为0.75(95%CI 0.53–1.07,p = 0.116)。在欧洲人口中的LTL和额颞痴呆之间也发现了这种无效的关联。但是,我们发现LTL对ALS的间接影响可能是由低密度脂蛋白(LDL)或总胆固醇(TC)介导的欧洲人群。这些结果对广泛的灵敏度分析是可靠的。总的来说,我们的MR研究不支持LTL与ALS风险之间的直接因果关系,而是为LDL或TC对LTL和ALS在欧洲人群中的影响提供了暗示性的证据。
。cc-by-nc 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过PEER REVIVE的认证)Preprint preprint the本版本的版权所有者于2025年2月3日发布。 https://doi.org/10.1101/2025.02.03.25321568 doi:medrxiv preprint
准确描述自然对话中涉及的神经生理活动仍然是一项重大挑战。在本文中,我们探讨了自然对话过程中多模态对话行为与大脑活动之间的关系。由于功能性磁共振成像 (fMRI) 的时间分辨率以及记录的多模态信号的多样性,这具有挑战性。我们使用一个独特的语料库,其中包括在 fMRI 实验中记录的局部大脑活动和行为,当时几名参与者分别与人类和对话机器人进行自然对话。该语料库包括 fMRI 反应以及由同步原始音频及其记录、视频和眼动追踪记录组成的对话信号。所提出的方法包括第一步,从功能上明确的大脑区域中提取离散的神经生理时间序列,以及描述特定行为的行为时间序列。然后,应用机器学习模型根据提取的行为特征预测神经生理时间序列。结果显示,预测分数很有希望,并且在两种情况下(即人与人对话和人与机器人对话)的行为和功能性大脑区域活动之间存在特定的因果关系。索引词:多模态信号处理、自然对话、机器学习、人与人、人与机交互、功能性磁共振成像