Loading...
机构名称:
¥ 1.0

摘要 — 通过神经网络实现的深度学习通过提供用于复杂任务(例如对象检测/分类和预测)的方法,彻底改变了机器学习。然而,基于深度神经网络的架构已经开始产生收益递减,这主要是由于它们的统计性质以及无法捕捉训练数据中的因果结构。深度学习的另一个问题是其高能耗,从可持续性的角度来看,这并不是那么理想。因此,人们正在考虑采用替代方法来解决这些问题,这两种方法都受到人脑功能的启发。一种方法是因果学习,它考虑到神经网络训练数据集中项目之间的因果关系。预计这将有助于最大限度地减少深度神经网络学习表示中普遍存在的虚假相关性。另一种方法是神经混沌学习,这是一项最新发展,其灵感来自生物神经网络(大脑/中枢神经系统)中神经元固有的非线性混沌放电。这两种方法都显示出比单纯使用深度学习更好的效果。为此,在本文中,我们研究了如何将因果学习方法和神经混沌学习方法整合在一起以产生更好的结果,尤其是在包含链接数据的领域。我们提出了一种这种整合的方法来增强分类、预测和强化学习。我们还提出了一组需要研究的研究问题,以使这种整合成为现实。索引术语——深度学习、因果学习、神经混沌学习、图神经网络、随机共振

将因果关系与神经混沌学习相结合

将因果关系与神经混沌学习相结合PDF文件第1页

将因果关系与神经混沌学习相结合PDF文件第2页

将因果关系与神经混沌学习相结合PDF文件第3页

将因果关系与神经混沌学习相结合PDF文件第4页

将因果关系与神经混沌学习相结合PDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2022 年
¥4.0