摘要。由于神经元结构的复杂性和某些区域的极弱信号,从大规模光学显微镜图像中重建神经元是一项具有挑战性的任务。传统的分割模型建立在 vanilla 卷积和体素损失的基础上,难以在稀疏的体积数据中建模长距离关系。因此,特征空间中的弱信号与噪声混合,导致分割中断和神经元追踪结果过早终止。为了解决这个问题,我们提出了 NeuroLink,为网络添加连续性约束,并利用多任务学习方法隐式地模拟神经元形态。具体来说,我们引入了动态蛇形卷积来提取神经元稀疏管状结构的更有效特征,并提出了一种易于实现的基于形态的损失函数来惩罚不连续的预测。此外,我们指导网络利用神经元的形态信息来预测神经元的方向和距离变换图。我们的方法在低对比度斑马鱼数据集和公开可用的 BigNeuron 数据集上实现了更高的召回率和准确率。我们的代码可以在https://github.com/Qingjia0226/NeuroLink上找到。
主要关键词