摘要 - 在各个领域中广泛使用知识图在其中有效整合和更新信息带来了挑战。在合并上下文时,常规方法通常依赖于规则或基本的机器学习模型,这可能无法完全掌握上下文信息的复杂性和流动性。这项研究提出了一种基于强化学习(RL)的方法,特别是利用深Q网络(DQN)来增强将上下文集成到知识图中的过程。通过将知识图的状态考虑为环境将动作定义为集成上下文的操作并使用奖励功能来评估知识图质量后整合后的改进,该方法旨在自动开发最佳上下文集成的策略。我们的DQN模型将网络用作函数近似器,不断更新Q值以估计动作值函数,从而有效地集成了复杂和动态上下文信息。最初的实验发现表明,我们的RL方法在实现各种标准知识图数据集的精确上下文集成方面优于技术,突出了增强学习在增强和管理知识图方面的潜在和有效性。索引术语 - 知识图推理,强化学习,奖励成型,转移学习
摘要 - 在本文中,我们应对预测部分观察到的环境的看不见的壁是一组2D线段的挑战,其条件是沿着360°LIDAR传感器的轨迹集成的占用网格。通过在大学校园的一组办公室规模平面图中,通过在一组随机采样的航路点之间导航一组随机采样的航路点,收集了此类占用网格及其相应目标墙细分的数据集。行段预测任务是作为自回归序列预测任务配制的,并且在数据集中对基于注意力的深网进行了训练。基于序列的自动回归公式通过预测的信息增益进行评估,就像在基于边境的自主探索中一样,证明了在文献中发现的非预测性估计和基于卷积的图像预测的显着改善。消融,以及传感器范围和占用网格的度量标准区域。最后,通过在现实世界办公室环境中直接重建的新型平面图中预测墙壁来验证模型通用性。
和非孔子材料)以及大容量的流体。在食品和饮料制造业中,尤其是在用于多种产品的过程线中,清洁也可能涉及清洗,即。在不同产品的生产之间去除残留物质。严格而密集的清洁可以集中于微生物物种的失活,而不是绝对去除,例如。在PAS TEURISATION和灭菌步骤中。术语清洁随后使用以包括所有这些操作。进行清洁以允许再次使用具有影响表面的材料或单位(恢复操作),用于不同的产品或服务(避免跨核管驯服),出售或安全起作用。另外,清洁可用于去除或灭活微生物spe cies(可能与致病性或变质相关),还可以使用
• 令人惊讶的是,人们会期望这样一个基本概念会在构成《盟军联合条令》的 50 多种盟军联合出版物 (AJP) 或《综合作战计划指令》xiii 中引入并彻底定义。不幸的是,很难找到这样的定义,或者更确切地说,很难找到与我们在此处讨论的内容一致的定义,即作战领域,例如陆地、海洋、空中、网络、太空。然而,在 COPD 第 26 页第 1-7 段“交战空间”中,可以找到“北约目前在 PMESII 结构下认可的六 (6) 个领域”的介绍。这六个领域是 (1) 政治、(2) 军事、(3) 经济、(4) 社会、(5) 基础设施、(6) 信息。有趣且完全相关的概念,但显然属于不同种类,并且与我们的陆地、海洋、空中、网络和太空领域处于不同的层次。
纠缠在量子信息处理中起着至关重要的作用,包括量子通信[1,2]和量子计算[3–5]。它是量子力学和经典力学的显著区别之一。几十年来,纠缠一直是量子力学基础研究的焦点,尤其与量子不可分性和违反贝尔不等式有关[6]。纠缠已被视为如此重要的资源,因此需要一种对其进行量化的方法。对于二分纠缠,Horodecki 家族[7]最近撰写了一篇详尽的综述,Plenio 和 Virmani[8]对纠缠测度进行了详细的综述。纠缠的操作标准之一是施密特分解[9–11]。施密特分解是研究二分纯态纠缠的一个很好的工具。施密特数提供了一个重要的变量来对纠缠进行分类。部分纠缠纯态的纠缠可以自然地通过其纠缠熵来参数化,定义为冯·诺依曼熵,或等效地定义为施密特系数平方的香农熵 [ 9 , 11 ]。如果只有所谓的“高斯态”,情况就会变得简单
图 1:对特定特征维度的注意力如何塑造神经特征维度图?A. 优先级图理论假设各种“特征维度图”用于根据其首选特征维度内的计算来索引视野中最重要的位置,并且这些图中的激活应根据观察者的目标进行缩放。如果正在进行的任务需要检测或辨别运动(例如,识别飞镖蜂鸟的运动方向),则相应“运动图”内的激活将增加与蜂鸟位置相关的重要性。运动图可以通过两种方式优先考虑超出空间注意力预期的局部效应的信息(例如,Sprague 等人,2018 年)。可以发生局部增强,这样只有具有关注特征的刺激的位置才会被优先考虑。或者,可以发生全局增强,这样整个地图上的激活被附加缩放,从而增加对任何位置关注特征维度的敏感度。这种类型的调制仍会驱动更强的目标表征,但当运动是目标相关特征维度时,还会在没有刺激的位置导致更强的反应。这里描绘了运动维度图,但调制同样适用于其他特征维度,例如颜色。B. 评估特征(运动)图中刺激位置和相反位置的激活可以区分局部和全局增强解释。两种模型都预测,当首选特征维度相关(例如运动;左)时,刺激将在刺激位置具有最大的激活。如果增强是局部的,那么相反位置的激活不应该在各种条件下改变(中间)。但是,如果存在全局增强,那么当运动与任务相关时,相反位置的激活应该增加。通过计算刺激和相反位置之间的激活差异,可以评估基于特征的调制的空间特异性(右)。如果运动图中注意运动条件的激活差异(刺激相反)较大,则增强是局部的。然而,如果关注颜色和运动条件之间的激活差异相似,则增强在特征维度图上是全局的。
图形匹配,也称为网络对齐,是识别两个图表之间的双向反射,从而最大程度地提高了公共边数的数量。当两个图彼此完全同构时,此问题将减少到经典的图形同构问题,其中最著名的算法在准杂音时间时间中运行[1]。通常,图形匹配是二次分配问题[7]的实例,该实例已知可以解决甚至近似[38]。是由现实世界应用(例如社交网络去匿名化[45]和计算生物学[51])以及了解平均计算复杂性的需求,最近的研究集中在统计模型下的理论基础和有效的算法。这些模型假设这两个图是在隐藏的顶点对应关系下随机生成的,其中有相关的边缘,其中规范模型是以下相关的随机图模型。对于任何整数n,用u = u n表示为1≤i=j≤n的无序对(i,j)集。
摘要尽管它们具有巨大的效用和扩散,但大气压电离质谱技术仍受到称为矩阵效应(ME)的相关缺点。这些效应可以在基质依赖性信号抑制或增强中总结,这可能会导致错误的定量结果。由于矩阵中存在的干扰化合物,可以修改最重要的方法参数以及线性,精度和精度。如果不对我进行彻底评估,则不能接受验证方法,也不能解决最小化或纠正其影响的可能策略。矩阵效应是由影响目标分析物电离效率的残留矩阵组件共同阐明,并可能导致错误的结果。矩阵效果,即离子抑制或离子增强,在液相色谱 - 质谱法(LC-MS)中是众所周知的现象。它们可能是由各种起源的化合物引起的。由于矩阵效应可能对重要方法性能参数产生负面影响,因此必须在方法开发/验证期间对其进行测试和评估。这可以通过后柱输注方法或通过与分析物峰值的空白样品提取物的信号进行比较。在可能的情况下,应通过优化色谱条件来减少或消除基质效应,从而改善样品清理和/或通过更改所采用的电离类型。在本文中,我们专注于LC-MS/MS的矩阵效应的详细描述。
我们解决了图表中节点子集上定义的功能优化的问题。鉴于其组合,黑盒和昂贵的评估性质,这种功能的优化通常是一项非平凡的任务。尽管文献中已经引入了各种算法,但大多数是特定于任务或计算效率低下的算法,并且仅利用图形结构的信息而不考虑函数的特征。为了解决这些限制,我们利用贝叶斯优化(BO),一种样品有效的黑盒求解器,并提出了一个新颖的框架,以在图形上进行组合优化。更具体地说,我们将原始图中的每个k节点子集映射到新组合图中的节点,并采用局部建模方法,通过使用递归算法逐步采样其子图,以有效地穿越后者。合成和现实世界中的广泛实验证明了拟议的BO框架在各种类型的图形和优化任务上的有效性,其中通过消融研究详细分析了其行为。可以在github.com/leonresearch/graphcombo上找到实验代码。
对有针对性表示的有向图建模是在图形结构数据上执行机器学习的基本要求。几何嵌入模型(例如双曲线,锥体和盒子嵌入)在此任务中出色,表现出有针对性图的有用的电感偏差。然而,对包含周期和某些传递性元素的定向图进行建模,这是现实世界中常见的两种属性,这是具有挑战性的。框嵌入可以被认为是将图表示作为某些学到的超图上的交点,具有自然的感应性偏置,以建模传递性,但是(正如我们证明的)无法对周期进行建模。为此,我们提出了二进制代码框嵌入,其中博学的二进制代码选择了一个相交的图表。我们探索了几种变体,包括全局二元代码(相当于交叉点的联合)和每个vertex二进制代码(允许更大的灵活性)以及正则化方法。理论和经验结果表明,所提出的模型不仅保留了有用的传递性电感偏见,而且还具有足够的代表能力来模拟任意图,包括带有周期的图形。