我们解决了图表中节点子集上定义的功能优化的问题。鉴于其组合,黑盒和昂贵的评估性质,这种功能的优化通常是一项非平凡的任务。尽管文献中已经引入了各种算法,但大多数是特定于任务或计算效率低下的算法,并且仅利用图形结构的信息而不考虑函数的特征。为了解决这些限制,我们利用贝叶斯优化(BO),一种样品有效的黑盒求解器,并提出了一个新颖的框架,以在图形上进行组合优化。更具体地说,我们将原始图中的每个k节点子集映射到新组合图中的节点,并采用局部建模方法,通过使用递归算法逐步采样其子图,以有效地穿越后者。合成和现实世界中的广泛实验证明了拟议的BO框架在各种类型的图形和优化任务上的有效性,其中通过消融研究详细分析了其行为。可以在github.com/leonresearch/graphcombo上找到实验代码。