有很多现实世界的黑框优化概率需要同时优化多个标准。然而,在多目标优化(MOO)问题中,确定整个帕累托阵线需要过度的搜索成本,而在许多实际情况下,决策者(DM)只需要在帕累托最佳解决方案集中的特定解决方案。我们提出了一种贝叶斯操作方法(BO)方法,以使用昂贵的目标功能识别MOO中最喜欢的解决方案,其中DM的贝叶斯偏好模型是根据两种称为成对偏好和改进请求的Supperions类型的交互方式自适应估算的。要探索最优选的解决方案,我们定义了一个采集函数,在该函数中,在观察函数和DM偏好中的不确定性都已合并。为了最大程度地减少与DM的相互作用成本,我们还为偏好估计提出了一种主动学习策略。我们通过基准功能优化和机器学习模型的高参数优化问题来证明我们提出的方法的有效性。
主要关键词