Loading...
机构名称:
¥ 2.0

神经联想记忆是具有快速突触学习的单层感知器,通常存储神经活动模式对之间的离散关联。先前的研究分析了在独立模式成分和异质关联的朴素贝叶斯假设下的最佳网络,其任务是从输入到输出模式学习关联。在这里,我研究了用于自动关联的最优贝叶斯联想网络,其中输入层和输出层相同。特别是,我将性能与近似贝叶斯学习规则的不同变体(如 BCPNN(贝叶斯置信传播神经网络))进行比较,并尝试解释为什么有时次优学习规则比(理论上)最优模型实现更高的存储容量。事实证明,性能可能取决于违反“朴素贝叶斯”假设的输入成分的微妙依赖关系。这包括具有恒定数量的活动单元的模式、通过循环网络重复传播模式的迭代检索以及最可能单元的赢家通吃激活。如果所有学习规则都包含一种新的自适应机制来估计迭代检索步骤 (ANE) 中的噪声,则其性能可以显著提高。具有 ANE 的贝叶斯学习规则再次实现了整体最大存储容量。

具有最佳贝叶斯学习的神经自联想

具有最佳贝叶斯学习的神经自联想PDF文件第1页

具有最佳贝叶斯学习的神经自联想PDF文件第2页

具有最佳贝叶斯学习的神经自联想PDF文件第3页

具有最佳贝叶斯学习的神经自联想PDF文件第4页

具有最佳贝叶斯学习的神经自联想PDF文件第5页