Loading...
机构名称:
¥ 1.0

参数偏微分方程 (PDE) 的最优控制在工程和科学领域的许多应用中都至关重要。近年来,科学机器学习的进步为参数偏微分方程的控制开辟了新的领域。特别是,深度强化学习 (DRL) 有可能在各种应用中解决高维和复杂的控制问题。大多数 DRL 方法依赖于深度神经网络 (DNN) 控制策略。然而,对于许多动态系统,基于 DNN 的控制策略往往过度参数化,这意味着它们需要大量的训练数据、表现出有限的鲁棒性并且缺乏可解释性。在这项工作中,我们利用字典学习和可微分 L 0 正则化来学习参数偏微分方程的稀疏、鲁棒和可解释的控制策略。我们的稀疏策略架构与 DRL 方法无关,可以在不同的策略梯度和参与者-评论家 DRL 算法中使用,而无需改变其策略优化程序。我们在控制参数化 Kuramoto-Sivashinsky 和对流-扩散-反应 PDE 的挑战性任务上测试了我们的方法。我们表明,我们的方法 (1) 优于基于 DNN 的基准 DRL 策略,(2) 允许推导所学最优控制律的可解释方程,以及 (3) 推广到 PDE 的未知参数而无需重新训练策略。

具有深度强化学习的参数 PDE 控制......

具有深度强化学习的参数 PDE 控制......PDF文件第1页

具有深度强化学习的参数 PDE 控制......PDF文件第2页

具有深度强化学习的参数 PDE 控制......PDF文件第3页

具有深度强化学习的参数 PDE 控制......PDF文件第4页

具有深度强化学习的参数 PDE 控制......PDF文件第5页

相关文件推荐