Loading...
机构名称:
¥ 1.0

1 简介 脑机接口 (BCI) 可以实现大脑与外部设备之间的直接通信,为康复和通信提供了巨大的潜力 [1]。尽管基于脑电图 (EEG) 的 BCI 具有如此强大的功能,但目前仍存在信噪比低、特异性不足和域偏移(例如,数据分布的变化)等问题。传统上,通过收集标记校准数据和训练领域特定模型来缓解域偏移 [1]。然而,这种方法资源密集且耗时。作为一种替代方案,无监督域自适应 (UDA) 从标记源域中学习一个模型,该模型可有效执行不同的(但相关的)未标记目标域 [1]。在 BCI 领域,UDA 主要解决会话间和主体间的迁移学习 (TL) 问题 [2],旨在无需监督校准即可实现跨域(即会话和主体)的稳健泛化。在我们之前的工作中,我们开发了一个几何深度学习框架,称为 TSMNet [3],用于对对称正定 (SPD) 流形执行统计对齐。TSMNet 在配备有仿射不变黎曼度量的 SPD 流形上联合学习卷积特征提取器和切线空间映射 (TSM),该度量由于其对潜在源的线性混合具有固有的不变性,非常适合 EEG 数据 [4]。许多 UDA 框架(包括 TSMNet)对齐边际特征分布,隐式假设跨域的标签分布相同。然而,在实践中经常遇到标签偏移,标签偏移下的边际特征对齐会增加泛化误差 [5]。最近的方法将这种对齐问题定义为不平衡的多源和多目标 UDA 问题 [6]。本文介绍了 TSMNet 的扩展,增强了其同时解决特征和标签偏移的能力。为了维护 TSMNet

几何深度学习增强脑电图中不平衡域适应

几何深度学习增强脑电图中不平衡域适应PDF文件第1页

几何深度学习增强脑电图中不平衡域适应PDF文件第2页

几何深度学习增强脑电图中不平衡域适应PDF文件第3页

几何深度学习增强脑电图中不平衡域适应PDF文件第4页

几何深度学习增强脑电图中不平衡域适应PDF文件第5页

相关文件推荐

2025 年
¥18.0
2020 年
¥1.0