摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常在齿轮和壳体之间以微米级间隙安装。在大多数这些应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常可取的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地减少同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究通过优化参数(切削速度、进给率、切削深度和切削刀具刀尖半径)尝试实现圆柱形加工零件的最小同轴度误差。计划进行实验,即中心复合设计矩阵和统计分析通过应用响应面法确定机器参数对高强度 Al 7075 合金同轴度误差的影响。进给率和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 以及 Rao(Rao-1、Rao-2 和 Rao-3)算法,使用推导出的经验方程来最小化同轴度误差。Rao 算法在计算量和解决方案精度方面均优于 Big-Bang 和 Big Crunch 算法。Rao 算法的结果经过实验验证,同轴度误差降低至 1.013 µm,与 CCD 实验相比提高了 72.6%。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 随着纳米技术领域的进步,纳米图案化不仅在高附加值产品中得到广泛应用,而且在廉价产品中也得到广泛应用。此外,大规模生产廉价产品所需的技术,如连续卷对卷 (R2R) 工艺,正在迅速兴起。人们对亚微米和纳米模具的制造进行了广泛的研究。在这项研究中,我们提出了一种激光干涉曝光来制造可用于连续卷对卷图案化的纳米图案圆柱形模具。此外,我们还展示了使用棱镜在圆柱体(长度为 300 毫米,直径为 100 毫米)上制造无缝图案的螺旋曝光工艺。使用 UV 树脂将图案转移到平面模具上,并使用场发射扫描电子显微镜进行测量;测量结果显示图案均匀,具有纳米图案线宽(75 纳米)和亚微米周期(286 纳米)。观察结果表明,使用激光干涉光刻制造卷模的方法是一种快速可靠的无缝图案化方法。
Kristen M. Flynn、Kolby L. White 和 Mohammad Movassaghi* 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 电子邮件:movassag@mit.edu
堆叠电介质三材料圆柱栅极全包围 (SD-TM-CGAA) 无结 MOSFET 已被用于低功耗应用。本文介绍了堆叠电介质三材料圆柱栅极全包围 (SD-TM-CGAA) 无结 MOSFET 的亚阈值电流分析模型。分析结果与 TMSG MOSFET 进行了比较,获得了良好的一致性。该器件的亚阈值电流非常低,可以考虑实现 CMOS 反相器。设计了一个 PMOS 晶体管,并将 PMOS 晶体管的驱动电流与 NMOS 器件进行调谐,以获得驱动电流的理想匹配。设计了一个 CMOS 反相器。检查了器件的瞬态和直流行为。计算了 CMOS 反相器的功耗,并将其与 CMOS DMG-SOI JLT 反相器进行了比较。与 CMOS DMG-SOI JLT 反相器相比,所提出的器件的功耗降低了 5 倍。这表现出功率耗散的显著改善,这对于制造低功耗的未来一代设备非常有用。
摘要:本文研究了带电的圆柱塌陷的动力学,并在F(r,tαβTαβ)理论中使用了耗散物质的构造。这种新配制的理论解析了原始奇异性,并在早期宇宙中提供了可行的宇宙学结果。此外,它的含义发生在高曲率方向上,在高曲率方向上,能够确定能量摩托车平方与一般相对论的偏差。我们分别通过Misner -Sharp和M. u ler – Il -ler -ol -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler的动力学方程。然后,我们将这些方程式磨损以检查有效的流体参数和校正项对崩溃现象的影响。也开发了修改的术语,物质参数和Weyl张量之间的连接。为了获得保融性,我们选择了该理论的特定模型,并假设具有零电荷的尘埃物质会导致共形的平流和均匀的能量密度。我们发现经过修改的术语,耗散物质和电磁场减少了崩溃的现象。
摘要本文认为,有效的人工智能控制算法需要工业机器人操纵器的内置对称性,以进一步表征和利用。此增强的乘积是一个四维(4D)离散的圆柱网格空间,可以直接替换复杂的机器人模型。a ∗是为了在此类算法中广泛使用,以研究在4D圆柱离散网格中指导机器人操纵器的优势和缺点。研究表明,这种方法可以在计划和执行时间内对机器人运动学和动态模型的任何特定知识来控制机器人。实际上,每个网格单元的机器人关节位置被预先计算并作为知识存储,然后在需要时通过路径填充算法快速检索。4D圆柱离散空间既具有配置空间的优势,也具有机器人的三维笛卡尔工作空间。由于路径优化是任何搜索算法的核心,包括∗,因此4D圆柱网格为搜索空间提供了一个可以嵌入单元特性形式的知识的搜索空间,包括存在障碍物的存在和整个工业机器人体的体积占用,以避免障碍物。主要的权衡是在预计网格知识的有限能力与路径搜索速度之间。这种创新的方法鼓励将搜索算法用于工业机器人应用,这是对不同机器人模型中存在的其他机器人对称性的研究,并为应用动态障碍算法的应用奠定了基础。