能够监视锂离子电池(LIB)的热行为的能力,是选择性性能并确保安全操作的必要前提。但是,传统的点测量(热电偶)在准确表征LIB行为方面面临着挑战,尤其是定义热点以及热梯度的大小和方向。为了解决这些问题,已经采用了基于光频域反射计(OFDR)分布式 - 光纤维传感器来量化圆柱形21700 LIB内的热量产生。实现了光学传感器内的3 mm空间分辨率。光纤已在细胞表面周围缠绕,以超过1300个独特的测量位置;分布在圆周周围,沿Lib轴向分布。分布式测量结果表明,在1.5C放电期间,最大热差可以达到8.37℃,而点状传感器的热差为4.31℃。虽然沿细胞轴向长度的温度梯度首次被充分理解,但该研究首次量化了沿细胞周长的温度变化。全球热图像突出显示热量产生是在正电流标签周围积累的,这意味着在传统表征实验和电池管理系统(BMS)内定义传感器的位置时,需要对内部LIB结构的基本知识。
摘要:本文研究了带电的圆柱塌陷的动力学,并在F(r,tαβTαβ)理论中使用了耗散物质的构造。这种新配制的理论解析了原始奇异性,并在早期宇宙中提供了可行的宇宙学结果。此外,它的含义发生在高曲率方向上,在高曲率方向上,能够确定能量摩托车平方与一般相对论的偏差。我们分别通过Misner -Sharp和M. u ler – Il -ler -ol -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler -ler的动力学方程。然后,我们将这些方程式磨损以检查有效的流体参数和校正项对崩溃现象的影响。也开发了修改的术语,物质参数和Weyl张量之间的连接。为了获得保融性,我们选择了该理论的特定模型,并假设具有零电荷的尘埃物质会导致共形的平流和均匀的能量密度。我们发现经过修改的术语,耗散物质和电磁场减少了崩溃的现象。
摘要 —本文介绍了一种基于半圆柱槽结构的高增益宽带圆柱介质谐振器天线(CDRA)。采用半圆柱槽结构将 CDRA 的高阶 HEM 12 σ 模式与槽谐振模式相结合,实现具有高增益特性的混合辐射模式。为进一步提高天线的实现增益,在不增加水平尺寸和轮廓的情况下对称使用一对寄生金属面板。此外,通过同时使用 HEM 12 σ 模式和槽模式,提出的由微带-带状线馈电结构馈电的高增益宽带 CDRA 实现了 5.92 GHz 的宽带宽。此外,通过利用馈电结构底部作为反射器的作用,无需进一步改进设计即可提高实现的增益。最后,设计、制造并测量了演示原型。所提出的天线在 27 GHz 左右的 22.1% 分数带宽 (FBW) 上实现了 12.9dBi 的峰值增益。测量结果与模拟结果非常吻合。它是 5G 毫米波无线通信的良好候选者。
摘要:电弧增材制造 (WAAM) 是一种基于气体保护金属电弧焊的增材制造工艺。它允许通过控制焊珠的沉积和堆叠来制造大体积金属部件。除了近净成形的金属部件制造外,WAAM 还应用于结构部件(例如壳体几何形状)的局部加固。然而,此过程可能会导致不希望的热诱导变形。在这项工作中,通过实验和瞬态热机械有限元模拟研究了半圆柱壳体几何形状的 WAAM 加固引起的变形。在实验中,将焊珠施加到样品上,同时使用热电偶测量其热历史。使用位移传感器记录正在发生的变形。实验数据用于校准和验证模拟。使用经过验证的模型,可以预测样品的温度场和变形。随后,使用模拟来评估不同的沉积模式和壳体厚度与由此产生的部件变形之间的关系。调查显示,壳体厚度与变形之间存在非线性关系。此外,焊道的方向和顺序对变形的形成有显著影响。然而,这些影响随着壳体厚度的增加而减弱。
摘要本文认为,有效的人工智能控制算法需要工业机器人操纵器的内置对称性,以进一步表征和利用。此增强的乘积是一个四维(4D)离散的圆柱网格空间,可以直接替换复杂的机器人模型。a ∗是为了在此类算法中广泛使用,以研究在4D圆柱离散网格中指导机器人操纵器的优势和缺点。研究表明,这种方法可以在计划和执行时间内对机器人运动学和动态模型的任何特定知识来控制机器人。实际上,每个网格单元的机器人关节位置被预先计算并作为知识存储,然后在需要时通过路径填充算法快速检索。4D圆柱离散空间既具有配置空间的优势,也具有机器人的三维笛卡尔工作空间。由于路径优化是任何搜索算法的核心,包括∗,因此4D圆柱网格为搜索空间提供了一个可以嵌入单元特性形式的知识的搜索空间,包括存在障碍物的存在和整个工业机器人体的体积占用,以避免障碍物。主要的权衡是在预计网格知识的有限能力与路径搜索速度之间。这种创新的方法鼓励将搜索算法用于工业机器人应用,这是对不同机器人模型中存在的其他机器人对称性的研究,并为应用动态障碍算法的应用奠定了基础。
超弹性圆柱壳在加压下表现出的显著变形使其成为可编程充气结构的理想平台。如果施加负压,圆柱壳将弯曲,从而产生一系列丰富的变形模式,由于选择了超弹性材料,所有这些变形模式都可以完全恢复。虽然真空下的初始屈曲事件很容易理解,但这里探索了后屈曲状态,并确定了设计空间中发生耦合扭曲收缩变形模式的区域;通过仔细控制我们的均质壳的几何形状,可以控制收缩与扭曲的比例。此外,可以通过改变我们壳的圆周厚度来解锁作为后屈曲变形模式的弯曲。由于这些软壳可以从屈曲引起的显著变形中完全恢复,因此可以利用这些不稳定性驱动的变形来构建能够通过单个驱动输入进行可编程运动序列的软机器。
摘要:本文研究了轴向施加电场下圆柱形量子点结构的电子学与光学特性,选取四种不同的轴向双曲型势。考虑了一个位置相关的有效质量模型,在求解特征值微分方程时既考虑了有效质量在轴向随约束势变化的平滑变化,也考虑了其在径向的突变。特征值方程的计算同时考虑了狄利克雷条件(零通量)和开边界条件(非零通量),在垂直于施加电场方向的平面内实现,这保证了本文结果对于具有极高寿命的准稳态的有效性。采用对角化法结合有限元法,找到了圆柱形量子点中约束电子的特征值和特征函数。用于求解微分方程的数值策略使我们能够克服异质结构边界平面和圆柱面相交区域中边界条件存在的多个问题。为了计算线性和三阶非线性光学吸收系数以及折射率的相对变化,我们使用了密度矩阵展开中的两级方法。我们的结果表明,通过改变结构参数(例如轴向电位的宽度和深度以及电场强度),可以调整所关注结构的电子特性和光学特性,以获得适合特定研究或目标的响应。
在这种类型的轴承中,圆柱滚子与滚道呈线性接触。它们具有较高的径向载荷能力,适用于高速运转。NU、NJ、NUP、N 和 NF 是单列轴承类型,而 NNU 和 NN 是双列轴承类型,其名称取决于设计或是否有侧挡边。所有类型的外圈和内圈都是可分离的。一些圆柱滚子轴承的内圈或外圈上都没有挡边,因此两个圈可以相对轴向移动。这些可以用作自由端轴承。圆柱滚子轴承的内圈或外圈有两个挡边,另一个圈有一个挡边,能够在一个方向上承受一些轴向载荷。双列圆柱滚子轴承具有较高的径向刚度,主要用于精密机床。通常使用压制钢或机加工黄铜保持架,但有时也使用模制聚酰胺保持架。
超材料是人为设计的材料,旨在具有天然材料中未发现的电磁场的性质。各向异性超材料的电磁特性取决于方向,这为它们提供了控制传统材料无法控制波动的能力。这些属性就像在大规模影响波传播的超材料元件之间的复杂相互作用,例如分散,衰减和波浪的极化[6]。各向异性超材料由定向电导率,渗透率和介电量张量定义。与典型的各向同性材料不同,这些参数不是不变的;相反,它们是方向依赖性的,因此导致材料内部的波浪行为复杂。上述特征可以由张量表示,张量概述了多维材料波相互作用[7]。
在这种类型的轴承中,圆柱滚子与滚道呈线性接触。它们具有较高的径向载荷能力,适用于高速运转。NU、NJ、NUP、N 和 NF 为单列轴承类型,而 NNU 和 NN 为双列轴承类型,其名称取决于设计或侧挡边的缺失。所有类型的外圈和内圈都是可分离的。一些圆柱滚子轴承的内圈或外圈都没有挡边,因此圈可以相对彼此轴向移动。这些可以用作自由端轴承。圆柱滚子轴承的内圈或外圈有两个挡边,另一个圈有一个挡边,能够承受一个方向的轴向载荷。双列圆柱滚子轴承具有较高的径向刚度,主要用于精密机床。一般使用冲压钢或机加工黄铜保持架,但有时也使用模压聚酰胺保持架。