“所以我们只需要叠加径向场线,这些场线是通过在三维笛卡尔/球面/圆柱坐标系中取电势梯度的负值而得到的,并且垂直于等势线,即所有具有相同势差的点的轨迹点。很简单……我们就这么做!……哦,等等……什么?。”
NEMA幻影图像是按照Nema Nu-2 1994中所述处理的,以获取空气,水和特氟龙中的残留分数(RF)。圆柱形ROI约为35%的杆高度和杆(ROIF)或一半(ROIH)物理直径在CT图像上,并在Tom的均匀部分中与大圆柱ROI一起绘制。在所有ROI中,计算每个像素(C)的平均计数,并在较大的ROI中计算标准偏差(SD)。恢复系数(RC)的热棒计算为C杆 /C均匀,冷棒的1- C杆 /C均匀。均匀部分中变异系数(COV)为SD/ C均匀。转化因子(CF)是使用各种高度和直径的大圆柱ROI从L和XL幻影获得的,并应用于NEMA均匀部分和NEMA放射性区域的均匀部分。
案例研究:整合北美电网 162 案例研究:电网拥塞 - 疏通北美电网动脉 167 4.1 输电线设计考虑事项 173 4.2 电阻 178 4.3 电导 181 4.4 电感:实心圆柱导体 181 4.5 电感:单相两线线路和相距相等的三相三线线路 186 4.6 电感:复合导体、不等相距、捆绑导体 188 4.7 串联阻抗:带有中性导体和接地回路的三相线路 196 4.8 电场和电压:实心圆柱导体 201 4.9 电容:单相两线线路和相距相等的三相三线线路 204 4.10 电容:绞合导线、不等相间距、捆绑导线 206 4.11 分流导纳:带有中性导线和接地回路的线路 210 4.12 导线表面和地面的电场强度 215 4.13 并联电路三相线路 218
ank, manuel, summer, Alessandro, subscription gamra, Kareem, Schöberl, Jan, Leeb, Matthias, Schachtl, Johannes, Streidel, Noah, Sandro, Schreiber, Markus, Bilfinger, Philip, Allgäuer, Christian, Rosner, Philipp, Hagemeister, Jan, Rößle, Matti, Daub, Rüdiger, Markus, Markus,《汽车应用中的锂离子细胞:特斯拉4680圆柱细胞拆卸和表征》,《电化学学会杂志》,第170卷,编号12ank, manuel, summer, Alessandro, subscription gamra, Kareem, Schöberl, Jan, Leeb, Matthias, Schachtl, Johannes, Streidel, Noah, Sandro, Schreiber, Markus, Bilfinger, Philip, Allgäuer, Christian, Rosner, Philipp, Hagemeister, Jan, Rößle, Matti, Daub, Rüdiger, Markus, Markus,《汽车应用中的锂离子细胞:特斯拉4680圆柱细胞拆卸和表征》,《电化学学会杂志》,第170卷,编号12
由于电动汽车和电池储能系统的重要性日益严重,因此必须在生产过程中和生产后确保电池安全性。一个方面是内部结构的可视化,可以通过计算机断层扫描(CT)作为一种非破坏性测试(NDT)方法来实现。深度学习工具可以快速学习和执行不同的图像处理任务。但是,在大多数设置中,生成训练这些工具所需的标记数据很昂贵。因此,这项工作通过逐步学习(GL)解决了CT体积中阳极和阴极的分割,该技术仅需要单个注释的体积切片。该技术利用了相邻切片之间的高相似性,并应用于电池堆栈细胞和圆柱形细胞。对于堆栈细胞,使用了平移相似性,这导致平均增益比联合(IOU)点相交0.09。对于圆柱细胞,提出了沿旋转中心切片的顺序分割。这导致GL应用之前的堆栈单元的较高初始IOU为0.78 vs. 0.73。对于圆柱细胞类型的GL的IOU增益为0.01 iOU点较小,但由于去除其余的伪影时,定性样品显示出改善。
第2章。收费和导体(68 pp。)2.1。极化和筛选2.2。电容2.3。最简单的边界问题2.4。使用其他正交坐标2.5。可变分离 - 笛卡尔坐标2.6。可变分离 - 极性坐标2.7。可变分离 - 圆柱坐标2.8。可变分离 - 球形坐标2.9。电荷图像2.10。Green的功能2.11。数值方法2.12。运动问题(47)
扩散炉是一个热处理单元,具有圆柱加热室,可以水平或垂直定向。由于等距表面辐射热量,因此可以通过出色的热均匀性处理圆形工件。它们也可以在部分真空条件下发挥作用,以确保整个操作中的大气控制。这对于确保蒸气相扩散到固态半导体的情况下而无需引入不良杂质的最佳条件至关重要。
具有 3-D 双曲空间 H 3 。当 h eff = nh 0 时,任何携带暗物质的系统的磁体 (MB) 都提供了任何系统的表示(反之亦然)。MB 能否提供这种表示,作为因果菱形 (cd) 的 3-D 双曲面的镶嵌,定义为 M 4 的未来和过去定向光锥的交点?由 SL (2, Z) 的子群或其用代数整数替换 Z 的泛化标记的镶嵌点将由其统计特性决定。H 3 处神经元磁像的位置将定义 H 3 的镶嵌。镶嵌可以映射到庞加莱盘的模拟 - 庞加莱球 - 表示为未来光锥的 t = T 快照(t 是线性闵可夫斯基时间)。t = T 之后,神经元系统的大小不会改变。镶嵌可以将认知表征定义为一组离散的时空点,其坐标为可分配给表示 MB 的时空表面的有理数的某种扩展。有人可能会认为 MB 具有更自然的圆柱对称性而不是球对称性,因此也可以考虑在 E 1 × H 2 处使用圆柱表示
SKF 的新型货运圆柱滚子轴承单元 (CRU) 标志着铁路行业迈出了重要一步。这款创新产品旨在满足日益增长的对成本效益高、可持续货物运输的需求。CRU 经过预润滑和密封,可最大限度地减少维护需求。CRU 的尺寸确保与现有轴承兼容,在最常用的货运轴箱类型(如 Y25)中,CRU 简化了更换过程,无需进行大量改装。其设计采用夹紧外圈和内圈,增强稳定性,并且可在不超过维护间隔的情况下重复使用。密封的 CRU 为轴箱引入了额外的密封屏障,可提供出色的防污保护,从而延长使用寿命。SKF 对创新的承诺在 CRU 中得到了充分体现,它将重新定义货运轴承解决方案的性能和使用寿命”,全球铁路工程经理 Jan Babka 说道。 CRU 的维护间隔长达 120 万公里或 11-12 年,是标准圆柱滚子轴承的两倍。这种延长的间隔证明了该装置的耐用性和其制造过程中使用的高级材料。得益于专用液压机和工具,安装和拆卸非常方便,这进一步提高了 CRU 的效率。