从左上角进行:(a)PLA纳米纤维的SEM图像(Gomez-Bombarelli教授的组); (b)自我修复的纳米复合材料叶(MacFarlane教授的组); (c)混合矩阵膜的SEM图像(史密斯教授的组); (d)Sol-Gel Transition的例证(Olsen教授的小组); (e)粘弹性唾液线的结构(麦金莱教授的小组); (f)细胞粘附的模拟(Qi教授组); (g)两个DNA序列自发地分为两个区域,展示了自我分类行为(Jain教授的组); (H)带有共形聚酰亚胺涂层的单个碳纳米管(Hart教授组); (i)生物场效应晶体管的示意图(Furst教授的组)
• 对于关于课程内容、作业、截止日期等的一般问题,请使用向教授提问讨论板(如果愿意,您可以匿名发帖)。 • 对于具体问题,无论是关于缺席、延期等的个人问题,还是您希望我在提交之前检查您的作业是否正确,请直接给我发电子邮件。我们将在工作日 24 小时内和周末 48 小时内答复通信,但通常我的回复会比这快得多。 课程描述 3 个课时、1 个实验室课时、4 个学分 先决条件:EE 2301 本课程强调二极管、运算放大器、晶体管(双极和场效应)和光学设备(LED 和光电晶体管)的内部操作、终端特性和模型。此外,还将探索碳纳米管和石墨烯等纳米技术领域。课程中的实验部分侧重于将本课程中获得的技能应用于机器人、生物医学、电机等新兴技术。课程材料建议文本(非必需):
原子层面的磁相互作用在磁性中起着核心作用。近年来兴起的二维范德华 (vdW) 磁性材料由于其高结晶性、可调性以及可研究不同厚度的可能性,为研究磁相互作用提供了可能性[1,2],其中晶格特性可通过多种具有空间分辨率的探针轻松获取,如扫描探针和拉曼光谱[3-5]。磁相互作用最重要的指标之一是居里温度 (TC)。出于提高 TC 的实际动机,磁相互作用与 TC 之间的关系在 vdW 磁体中得到了广泛的研究。例如,通过电门控(特别是在场效应晶体管的结构中)研究了磁相互作用与电子结构和载流子浓度的变化,这改变了 Cr 2 Ge 2 Te 6 局部磁系统的磁滞曲线,而 TC 没有任何显著变化,而对于类似结构的 Fe 3 GeTe 2 流动磁系统,TC 从 205K 升高到室温以上 [6, 7]。从历史上看,
基于半导体过渡金属二分法的晶体管可以提供高载体的迁移率,强旋转 - 轨道耦合以及在量子接地状态下固有强的电子相互作用。这使它们非常适合在低温下用于纳米电子产品。然而,在低温温度下与过渡金属二甲基化金属层建立强大的欧姆接触非常困难。因此,无法达到费米水平靠近带边缘的量子极限,从而探测了分数填充的Landau级级别中的电子相关性。在这里我们表明,使用窗户接触技术可以在从Millikelvins到300 K的温度范围内创建与N型钼二硫化物的欧姆接触。我们观察到超过100,000 cm 2 v -1 s -1的场效应,在低温下的传导带中,超过3,000 cm 2 v -1 s -1的量子迁移率超过3,000 cm 2 v -1 s -1。我们还报告了在最低的双层钼二硫化物中,填充4/5和2/5的分数量子厅状态的证据。
在供应器型有机光电器件中,例如有机太阳能电池(OPV)和Expiplex型有机光二极管(EOLED),电荷转移(CT)机制是导致库仑绑定的电荷对(Geginate对(Geginate Pair)的主要过程,它们要么将其分散到自由载体中,要么将其降低到自由载体或放松身心。广泛的理论和实验工作以Onsager计算为基础,以确定初始电子孔距离,并研究电场对Geminate对分离和自由载体的产生的影响。在这里,我们讨论了Reveres Onsager过程,随着E-H距离的降低,场诱导蓝色光谱移动。求解场效应库仑势能方程,我们能够解释观察到的蓝色光谱移位并确定设备结构中的E-H距离,库仑势能和电场分布。该过程提供了对捐赠者接口处的外部重组的基本理解。
摘要 — 二维 (2D) 半导体晶体可用于进一步提高场效应晶体管的效率和速度。此类晶体管不受传统 MOS 晶体管在尺寸减小时产生的一些不利影响。本研究提出了以二维晶体为沟道的晶体管 MOS 结构模型,并研究了其电荷特性。在 MoSe 2 、WS 2 、WSe 2 、ZrSe 2 、HfSe 2 和 PtTe 2 等代表性二维晶体的电物理特性变化范围内对这些特性进行了数值模拟。发现了结构电物理参数通过化学势的自洽相关性,并证明了场电极电位和栅极绝缘体电容对它们的影响。对该晶体管结构的传输特性陡度与电压增益的计算表明,对于禁带宽度在0.25–2.1 eV范围内的过渡金属二硫属化合物(TMD)沟道,上述参数的幅度分别可达0.1 mA/V和1000。
第一单元电子设备(10 L)先进电子设备:半导体肖特基二极管简介、半导体二极管、齐纳二极管、隧道二极管及其应用、双极型晶体管及其操作和特性、偏置和稳定、晶体管混合模型、使用 h 参数分析晶体管放大器电路、结型场效应晶体管的特性、JFET 的偏置、金属氧化物半导体 JFET 的概念和应用、光电二极管、发光二极管和太阳能电池、电源(包括整流和滤波电路)和调节器。第 2 单元反馈放大器和振荡器(8 L)放大器的分类、反馈的概念、负反馈和正反馈的一般特性、振荡器原理、巴克豪森标准、科尔皮特和哈特利振荡器、RC 振荡器、温桥振荡器、RC 相移振荡器、多谐振荡器、非稳态、单稳态和双稳态多谐振荡器、方波、三角波发生器和脉冲发生器
推动了大面积柔性和印刷电子领域的发展。这些进步使得大量应用成为可能,例如有机发光二极管[1,2]、有机光伏电池[3,4]、有机热电电池[5,6]、有机场效应晶体管 (OFET)、[7–10] 有机(生物)传感器[11–13] 和神经形态设备。[14,15] 在这方面,有机场效应晶体管 (OFET) 不仅与其直接的技术应用有关,而且还是研究薄膜电性能的理想试验台。有机半导体通常分为两大类,即共轭聚合物和小分子。前者,即聚合物,由于其溶液可加工性而特别具有吸引力,并且已广泛报道了电荷迁移率高于氢化非晶硅标准(0.5–1 cm2V−1s−1)的 OFET。 [16] 后者是小分子,易于排列成有序的分子晶体,经过数年的化学调整和薄膜处理的精细调整,已经实现了场效应迁移率 > 10 cm 2 V − 1 s − 1 的小分子 OFET。[17–19] 这些材料的 π 共轭化学根源与其骨架上碳原子的 sp 2 杂化有关。这种特殊的特性也常见于
引起了人们的极大兴趣。在这些器件中,传统场效应晶体管的栅极电介质不存在:相反,通道通过含离子的溶液与栅极电接触。[4] 通道由对移动离子的局部浓度敏感的有机混合离子电子导体 (OMIEC) 组成。通过使用栅极电极耗尽或用带电物质增强通道,可以改变半导体聚合物的掺杂状态并调制其电导率。在液体环境中的操作、离子和电子传导之间的相互作用以及有机材料的柔软性质为这些器件开辟了一些令人着迷的应用,例如在生物电子学中[5,6] 它们可以在生物组织和体液中操作并与之相互作用,以及基于硬件的人工神经网络[7,8] 它们可用作人工突触(即具有可逆和可控电阻的电子设备)。 OECT 的神经形态特征已得到彻底研究,并且它们对通道固有特性的依赖性也得到阐明,通常由 RsC 时间常数决定(其中 Rs 是溶液的电阻,C 是通道的电容)。[9]
摘要:黑磷(BP)在电子和光电子应用方面表现出巨大的潜力,然而如何保持BP器件在整个温度范围内的稳定性能仍然是一个难题。本文展示了一种在原子层沉积AlN/SiO 2 /Si衬底上制备的新型BP场效应晶体管(FET)。电学测试结果表明,与传统SiO 2 /Si衬底上制备的BP FET相比,AlN衬底上的BP FET具有更优异的电学性能。在77至400 K的温度范围内,它表现出5 × 10 8 的大开关电流比、< 0.26 V/dec的低亚阈值摆幅和1071 cm 2 V −1 s −1的高归一化场效应载流子迁移率。然而,当温度升至400 K时,SiO 2 /Si衬底上的BP FET不再具有这些稳定的电学性能;相反,SiO 2 /Si 衬底上的 BP FET 的电性能却急剧下降。此外,为了从物理上了解 AlN 衬底上 BP FET 的稳定性能,进行了低频噪声分析,结果表明 AlN 薄膜