Loading...
机构名称:
¥ 1.0

该通道是通过电容耦合和在栅极电极上施加适当的偏压来实现的。然而,在传统 FET 架构中,卤化物钙钛矿在室温和低频(尤其是直流操作)下的电流调制具有挑战性,这主要是由于钙钛矿层的混合离子-电子特性。[2] 溶液处理的 FET 通常以累积模式工作,而传统的 Si 基晶体管则以反转模式工作,其中耗尽层将导电通道与半导体块体隔离。为了实现电流的栅极调制和累积模式下的大开关电流比,需要具有低离子浓度的钙钛矿层。在高离子浓度下,如图 1a 所示,无法形成累积通道,因为栅极场被移动离子屏蔽,如图 1b 所示。只有当栅极偏压足够大以至于离子无法完全屏蔽栅极场时,才能观察到场效应电流。因此,形成一个积累层,如图 1c 所示。溶液处理的钙钛矿中可移动离子的浓度估计为 10 25 m − 3 的数量级,[3,4] 导致表面电荷密度为几个 μ C cm − 2,例如甲基铵卤化铅的表面离子密度为 5 μ C cm − 2。[3] 当使用厚度为 200 nm 的典型 SiO 2 栅极电介质(相对介电常数,k = 3.9)时,如此大的密度需要施加大于 300 V 的栅极电压才能感应积累通道,但这是不切实际的,因为它会导致电介质击穿。因此,钙钛矿 FET 中的电流调制主要在低温下实现,此时离子电导率显著降低,或者在高频下使用脉冲模式操作,此时离子无法响应电场的快速变化。[5] 低温或高频操作严重限制了钙钛矿 FET 的实际应用。为了解决这些问题,人们尝试了材料改性,例如合成单晶微板、[6] 准二维纳米片 [7] 或多组分钙钛矿 [8,9]。然而,这些方法可能会损害高通量制造、可重复性或高效电荷传输。因此,减轻或补偿离子迁移率对于实现实用的钙钛矿基 FET 至关重要。在这里,我们建议使用能够诱导大表面电荷密度的介电材料,例如

通过离子传输减缓实现室温卤化物钙钛矿场效应晶体管

通过离子传输减缓实现室温卤化物钙钛矿场效应晶体管PDF文件第1页

通过离子传输减缓实现室温卤化物钙钛矿场效应晶体管PDF文件第2页

通过离子传输减缓实现室温卤化物钙钛矿场效应晶体管PDF文件第3页

通过离子传输减缓实现室温卤化物钙钛矿场效应晶体管PDF文件第4页

通过离子传输减缓实现室温卤化物钙钛矿场效应晶体管PDF文件第5页

相关文件推荐

2021 年
¥1.0