最近已经开发了一种用于确定双向DNA复制起源的物理位置的一般方法,并证明能够正确识别Simian病毒40复制的起源(L. vassilev和E. M. Johnson,Nucleic Acids,Res。17:7693-7705,1989)。该方法比以前报道的其他方法的优点是,它避免了使用代谢抑制剂的使用,细胞同步的需求以及对原点序列的多个副本的需求。将这种方法应用于含有未扩增的单拷贝二氢叶酸还原酶基因基因座的非扩增,单拷贝的卵巢凝胶的应用显示,DNA的复制在大约2.5千千公斤的起始区域开始,大约2.5个千千万酶,长期以来,长期以来,长期以来,大约17千千千万的基础与DHFR Gene的下降序列相结合,以前是早期复制的。这些结果证明了该映射方案用于识别复制的celular起源的实用性,并建议在正常和放大的DHFR基因座中使用相同的cedlular起源。
许多作者考虑了用于分析来自杂种种群数据的设计(例如Neimann-Sprensen和Robertson,1961年; Soller和Genizi,1978年; Geldermann等,1985; Weller等,1990)。这些方法的缺点是他们一次使用来自单个MARIRW的信息。没有标记将具有统一性的杂合性,因此对于任何给定的标记,有些父亲都会是纯合的,因此是非信息的。这会浪费信息,并在QTL的估计位置中引入偏差可能会有更大的问题。此外,提出的最小二乘方法不能单独估计任何检测到的QTL的位置和效果。最大似然(ML)方法(Weller,1986; Knott and Haley,1992a)可以估计这两种效果,但是通常仅使用单个标记(Weller,1986; Knott; Knott and Haley,1992a and B)估计,位置与标记相对(I.E.可以是它的任何一侧)。
早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
摘要 通过聚合酶链式反应,可以从基因组 DNA 中酶促扩增单拷贝序列。通过使用两种不同摩尔量的扩增引物,只需一个步骤即可扩增单拷贝基因并产生所选链的过量单链 DNA,用于直接测序或用作杂交探针。此外,可以使用等位基因特异性寡核苷酸在扩增反应中或作为测序引物直接测序杂合子中的单个等位基因。通过使用这些方法,我们研究了 HLA-DQA 基因座的等位基因多样性及其与血清学定义的 HLA-DR 和 -DQ 类型的关联。该分析揭示了总共八个等位基因和三个额外的单倍型。该方法在筛查人类基因突变方面具有广泛的应用,并有助于将基因的酶促扩增与自动测序联系起来。
有鳞目爬行动物是陆地脊椎动物谱系中最成功的,遍布广泛的生态系统,有超过 10,000 个物种。尽管有鳞目动物取得了成功,但它们在免疫学方面也是研究最少的谱系之一。最近,发现有鳞目动物普遍缺乏 gd T 细胞,这是由于编码 T 细胞受体 (TCR) g 和 d 链的基因缺失所致。在这里,我们开始探讨 gd T 细胞的缺失可能如何影响有鳞目动物免疫系统的进化。使用石龙子 Tiliqua rugosa,我们发现与现存的最近亲属喙头蜥、Sphenodon punctatus 或其他羊膜动物相比,有鳞目动物并没有显著增加常规 T 细胞受体 β (TCR b 或 TRB ) 链 V 区的复杂性。我们的分析包括一个推定的新 TCR 基因座。这种新基因座包含可进行 V(D)J 重组的 V、D 和 J 基因片段,尽管在大多数有鳞目物种中基因片段数量有限。基于保守残基,预测的蛋白质链预计会与 TCR a 形成异二聚体。这种新的 TCR 基因座似乎源自 TRB 基因座的古老重复,与最近描述的 T 细胞受体 epsilon (TRE) 同源。TRE 在喙头蜥和所有经检测的祖龙的基因组中均不存在,并且似乎是鳞目特有的。
CAA风险(序数)Shade等。2024 -ROSMAP+NACC+ACT‡7,381 70.6%-0.81 [0.76,0.86] 8.00E -12 CAA风险(ordinal)Rosmap(重叠的Shade Shade et al.2024)847 46.5%50.1%0.67 [0.54,0.83] 2.57E-04 CAA风险(ORDINAL)NACC(重叠的Shade Shade Shade et al.2024)4,126 84.1%49.0%0.85 [0.78,0.92] 1.07E-04 CAA风险(ORDINAL)MCSA(独立于Shade等人2024)801 33.5%47.3%0.87 [0.73,1.05] 0.151
Junhao Wen,Ilya M Nasrallah,Ahmed Abdulkadir,Theodore D Satterthwaite,Zhijian Yang等。基因组基因座影响人脑结构协方差的模式。美国科学学院的会议记录,2023,120(52),10.1073/pnas.2300842120。hal-04362321
摘要:蛋白质和糖含量在大豆中是重要的种子质量特征,因为它们可以提高大豆食品和饲料产品的价值和可持续性。因此,通过通过标记辅助选择来加速育种过程,鉴定大豆种子蛋白和糖含量的定量性状基因座(QTL)可以使植物育种者和大豆市场受益。在这项研究中,从R08-3221(高蛋白质和低蔗糖)和R07-2000(高蔗糖和低蛋白质)之间的十字架开发了重组近交系(RIL)。蛋白质含量的表型数据取自F2:4和F2:5代。DA7250 NIR分析仪和HPLC仪器用于分析总种子蛋白和蔗糖含量。基因型数据是使用Soysnp6k芯片分析生成的。在这项研究中总共确定了四个QTL。蛋白质含量的两个QTL位于11和20染色体上,两个与蔗糖含量相关的QTL位于染色体14和。11,后者与检测到的蛋白质QTL共定位,解释了研究人群中大豆种子中蛋白质和蔗糖含量的10%的表型变异。大豆育种计划可以使用结果来提高大豆种子质量。
体细胞基因组编辑的临床应用需要可以推广到广泛患者的疗法。tar-插入无启动子转基因的插入可以确保编辑是永久且广泛适用的,同时最大程度地降低了脱靶集成的风险。在肝脏中,白蛋白(ALB)基因座是目前唯一用于无启动子插入式插入的特征良好的位点。在这里,我们针对ApoA1基因座,其腺体呈现病毒(AAV)的CRISPR-CAS9递送(AAV),并达到靶向肝细胞的6%至16%的速率,没有毒性的证据。我们进一步表明,内源性apoA1启动子可以驱动治疗蛋白(例如载脂蛋白E(APOE))的稳健和持续表达,在高胆固醇血症模型中大大降低了血浆脂质。最后,我们证明了由ApoA1靶向的富马乙酸乙酸乙酸苯胺其乙酸酯水解酶(FAH)可以纠正和挽救严重的代谢性肝病遗传性酪氨酸。总而言之,我们将APOA1识别为一个新型整合位点,该位点支持基因治疗应用中肝脏中持久的转基因表达。
Köhler和Milstein(1975)对杂交瘤技术的开发通过在研究和开发工作中的常规使用单克隆抗体(MAB)来彻底改变了免疫学领域,从而导致了他们今天在诊所的成功应用。 尽管需要重组良好的制造实践生产技术来生产临床级别的mAB,但学术实验室和生物技术公司仍然依靠原始的杂交瘤系列来稳定而轻松地以适度的价格生产高抗体产量。 在我们自己的工作中,我们在使用杂交瘤衍生的mAB时面临着一个主要问题:无法控制产生的抗体形式,这是重组产生确实允许的灵活性。 我们着手通过直接在杂交瘤细胞的免疫球蛋白(IG)基因座中的基因工程抗体来消除这一障碍。 我们使用了簇状的定期间隔短的短膜重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)和同源指导修复(HDR)来修改抗体的格式[mAb或抗原结合片段(FAB')]和同型。 本协议在几乎没有动手的时间内描述了一种直接的方法,导致稳定的细胞系分泌高水平的工程抗体。 亲本杂交瘤细胞保持在培养中,并用针对IG基因座感兴趣的指导RNA(GRNA)转染了IG基因座和HDR模板,以敲击所需的插入物和抗生素耐药性基因。 通过施加抗生素压力,在遗传和蛋白质水平上扩展并表征抗性克隆,以产生改良的mAb而不是亲本蛋白。Köhler和Milstein(1975)对杂交瘤技术的开发通过在研究和开发工作中的常规使用单克隆抗体(MAB)来彻底改变了免疫学领域,从而导致了他们今天在诊所的成功应用。尽管需要重组良好的制造实践生产技术来生产临床级别的mAB,但学术实验室和生物技术公司仍然依靠原始的杂交瘤系列来稳定而轻松地以适度的价格生产高抗体产量。在我们自己的工作中,我们在使用杂交瘤衍生的mAB时面临着一个主要问题:无法控制产生的抗体形式,这是重组产生确实允许的灵活性。我们着手通过直接在杂交瘤细胞的免疫球蛋白(IG)基因座中的基因工程抗体来消除这一障碍。我们使用了簇状的定期间隔短的短膜重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)和同源指导修复(HDR)来修改抗体的格式[mAb或抗原结合片段(FAB')]和同型。本协议在几乎没有动手的时间内描述了一种直接的方法,导致稳定的细胞系分泌高水平的工程抗体。亲本杂交瘤细胞保持在培养中,并用针对IG基因座感兴趣的指导RNA(GRNA)转染了IG基因座和HDR模板,以敲击所需的插入物和抗生素耐药性基因。通过施加抗生素压力,在遗传和蛋白质水平上扩展并表征抗性克隆,以产生改良的mAb而不是亲本蛋白。最后,修饰的抗体在功能测定中的表征。To demonstrate the versatility of our strategy, we illustrate this protocol with examples where we have (i) exchanged the constant heavy region of the antibody, creating chimeric mAb of a novel isotype, (ii) truncated the antibody to create an antigenic peptide-fused Fab' fragment to produce a dendritic cell–targeted vaccine, and (iii) modified both the constant heavy (CH)1 domain of the heavy chain (HC)和恒定的Kappa(Cκ)轻链(LC)引入位点选择性修饰标签,以进一步衍生纯化的蛋白质。仅需要标准的实验室设备,这有助于其在各种实验室中的应用。我们希望该协议能够进一步传播我们的技术并帮助其他研究人员。