本文的目的是通过深度增强学习对小鼠大脑的基底神经节功能进行建模。众所周知,基底神经节可以提供带有皮质直接影响运动功能的反馈回路。基底神经节中的大多数神经元都是抑制性或多巴胺能。这类似于加强学习的奖励体系。由于几乎不可能对基底神经节的整个应用进行建模,因此本文将重点介绍在迷宫的应用程序中对基底神经节进行建模,其中鼠标在迷宫中,并且需要找到“一块奶酪”(奖励)。这种现实世界的测试通常是在小鼠上进行的,并很好地展示了如何通过增强学习,通过奖励模仿学习[1]。在这种情况下,将在模拟动作方面抽象出其他相关领域(如感觉皮层和运动皮层)的功能和建模。总体而言,通过增强学习对基础神经节的关键功能将是其在行动选择和学习中的用途。
•经济竞争的解决方案:已经能够与灰氢竞争20兆瓦及以上的装置 - 这是替代技术可实现的壮举。•基于低成本生物量能量的经济模型:生物质热解的氢比初级能源成本低(<30€/MWH,通常<20欧元/MWH,与> 70欧元/MWH的含水)相比,与水电解的氢相比,与水的电解相比,与> 70欧元/MWH的氢相比,与含量> 70欧元/MWH相比,脱氧电力的能量和最佳能量效率(通常是70%)。•与电网独立:与电解不同,热解的最低限制取决于电力可用性和成本,从而确保稳定且可预测的产生。•负碳足迹:这项技术通过生物炭共同生产隔离生物碳,在考虑完整的LCA时达到了负碳足迹。3•灵活的采购:这种生物质 - 敏捷技术能够利用各种残留生物量,尤其是农业,确保对原料市场波动的更大自治和弹性,同时显着扩大了可用的资源。
摘要基于RNA的疗法在过去十年中迅速出现,提供了一种与常规药物有很大不同的新药物。可以对这些疗法进行编程以靶向或恢复有缺陷的基因,从而获得更多个性化的治疗方法并减少副作用。值得注意的是,RNA疗法在遗传肝病的治疗方面取得了重大进展,以小型干扰RNA治疗的遗传性透甲状腺蛋白淀粉样变性为例,这些淀粉样蛋白淀粉样蛋白使用肝脏靶向策略,例如Galnac共轭以提高疗效和安全性。基于RNA的基因编辑技术,例如基本编辑器和Prime Editor,定期散布了短暂的短篇小学重复系统,也表现出了希望最小化基因组重排和癌症风险的能力。虽然RNA疗法具有很高的精度,但仍在优化交付方法和确保长期安全性和功效方面仍然存在挑战。脂质纳米颗粒-MRNA疗法,尤其是在罕见疾病中蛋白质的替代品,已从临床前的成功中获得了支持。与病毒基因疗法相比,mRNA疗法具有更安全的特征,其基因组整合和致癌基因激活的风险降低。然而,临床试验,尤其是对于罕见疾病,面临限制,例如小样本量和短期观察期。进一步的临床前研究,包括非人类灵长类动物,对于精炼试验设计至关重要。尽管具有潜力,但RNA疗法的高成本构成了一个挑战,需要成本与私密模型来指导定价和可及性。在这里,我们讨论了基于RNA的疗法的基本方面,并展示了遗传肝脏代谢疾病中最相关的临床前和临床发展。
*OEM(原始设备制造商)是汽车制造商。第1层是汽车制造商的主要供应商。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2024.11.11.622161 doi:Biorxiv Preprint
1. 法国蔚蓝海岸大学,法国国家信息与自动化研究所,2004 Route des Lucioles BP 93,06902 Sophia Antipolis Cedex,法国 2. 格拉茨工业大学固体物理研究所,NAWI Graz,8010 Graz,奥地利 3. 林雪平大学科学与技术系有机电子实验室,601 74 Norrköping,瑞典 * 通讯作者:francesco.greco@tugraz.at 关键词:临时纹身,可穿戴,可塑性电子器件,表皮设备 摘要 在不断发展的可塑性电子器件领域,迄今为止的各种方法中,纹身技术应运而生。在这里,临时纹身纸被用作非常规基材来构建可转移的贴合身体的设备,从而与皮肤建立稳定且持久的界面。基于纹身的设备已经在多个领域展示了其能力,主要应用于人类健康生物监测。这种方法正在推动最先进的技术发展,克服现有技术的一些限制,例如皮肤接触电极和汗液分析。临时纹身也已应用于其他领域,例如有机电子学、有机太阳能电池和可转移食用晶体管的开发。已经展示了多种互补的临时纹身制作方法,从传统的真空沉积方法到各种印刷技术。在这篇评论中,我们除了报告和讨论纹身技术的主要制作方法和应用外,还描述了纹身的主要特点。
导管癌原位(DCIS)是一种无创类型的乳腺癌类型,具有侵入性和影响死亡率的高度可变的潜力。目前,由于缺乏特定的生物标志物,可将低风险病变与较高进展风险的患者区分开来,因此许多DCI患者被过度治疗。在这项研究中,我们分析了来自不同患者的57个纯DCI和313种侵入性乳腺癌(IBC)。 获得了三个级别的基因组数据;基因表达,DNA甲基化和DNA拷贝数。 我们进行了亚型分层分析和DCI和IBC之间的关键差异,这些差异表明亚型特定进展。 在基底样亚型的肿瘤中发现了显着差异:基础样的DCI的增殖较小,并且比基底样IBC显示出更高的分化程度。 此外,与IBC相反,在DCIS之间未识别核心基底肿瘤(以与基底质心相关的高度相关)。 在拷贝数水平上,与基底类的IBC相比,基底样的DCIS显示出较少的拷贝数畸变。 与基底样的DCI和正常组织相比,通过甲基甲基化的分析是基底样IBC中多重原钙粘着蛋白基因的高甲基化,这可能是由远程表观遗传沉默引起的。 这表明在基础类亚型的IBC中特异性地对细胞粘附相关基因进行沉默。在这项研究中,我们分析了来自不同患者的57个纯DCI和313种侵入性乳腺癌(IBC)。获得了三个级别的基因组数据;基因表达,DNA甲基化和DNA拷贝数。我们进行了亚型分层分析和DCI和IBC之间的关键差异,这些差异表明亚型特定进展。在基底样亚型的肿瘤中发现了显着差异:基础样的DCI的增殖较小,并且比基底样IBC显示出更高的分化程度。此外,与IBC相反,在DCIS之间未识别核心基底肿瘤(以与基底质心相关的高度相关)。在拷贝数水平上,与基底类的IBC相比,基底样的DCIS显示出较少的拷贝数畸变。与基底样的DCI和正常组织相比,通过甲基甲基化的分析是基底样IBC中多重原钙粘着蛋白基因的高甲基化,这可能是由远程表观遗传沉默引起的。这表明在基础类亚型的IBC中特异性地对细胞粘附相关基因进行沉默。我们的工作证实,在研究从DCIS到IBC的进展时,亚型地层是必不可少的,并且我们提供了证据,表明基底样DCIS表现出较小的侵略性,并质疑基底样DCIS是基底样DCIS是基础类似基底类似的乳腺癌乳腺癌的直接前体。
背景:乳腺癌是全球女性死亡的十大原因之一。约 20% 的患者被误诊,导致早期转移、治疗耐药和复发。许多临床和基因表达谱已成功用于将乳腺肿瘤分为 5 种主要类型,这些类型具有不同的预后和对特定治疗的敏感性。不幸的是,这些谱未能将乳腺肿瘤细分为更多亚型,以提高诊断率和存活率。可变剪接正在成为一种新的高度特异性生物标志物来源,用于将肿瘤分为不同等级。利用乳腺癌细胞系 (CCLE) 和乳腺癌肿瘤 (TCGA) 中的大量公共转录组学数据集,我们已经解决了可变剪接变体对高度侵袭性乳腺癌进行细分的能力。
随着可拉伸器件的发展,在软基底上具有刚性薄膜的工程部件越来越多。我们提出分析在双轴压缩应力状态下软基底上薄膜的屈曲脱层。该问题已通过欧拉柱屈曲分析进行了研究。本文介绍了在软基底上进行的实验,结果表明在某些情况下,“墨西哥帽”形状更能近似地表示屈曲形状。使用通过内聚相互作用粘合到弹性介质的非线性板的模型来描述脱层过程。结果表明,“墨西哥帽”形状改变了软基底的裂纹扩展行为。由 AIP Publishing 出版。[ http://dx.doi.org/10.1063/1.4979614 ]
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。