对于水面舰船结构,尽管自第二次世界大战以来,研究活动已大大增加,但尚未实现完全合理的弹性或塑性设计程序。目前采用经验性设计方法的根本原因是结构相当复杂,而且目前缺乏对海上载荷的了解。有趣的是,水面舰船结构通常比潜艇或飞机复杂得多,这种复杂性要求人们发挥相当大的创造力,将理论分析简化到可管理的比例。另一方面,对水面舰船结构相对缺乏了解并不特别重要,因为结构设计发展相当缓慢,主要基于以前的经验,很少考虑船舶和人员的安全。高强度钢、铝合金或玻璃增强塑料等更脆或更易疲劳的材料的引入等新发展可能会改变这种情况并导致对合理治疗的更迫切要求。
摘要:本文介绍了一种在循环压缩载荷下获取碳纤维增强塑料 (CFRP) 平板冲击后损伤扩展的分析方法。基于引入的参考损伤模式 (RDM) 假设,给出了损伤增长寿命的解决方案。通过使用有限元分析 (FEA) 对裂纹驱动力与损伤大小的分析,可以确定获取损伤增长寿命的损伤临界大小。通过示例讨论和说明了损伤容限原理对包含冲击损伤的结构元件压缩-压缩循环载荷情况的适用性。使用引入的简化方法计算损伤增长寿命特征的结果表明,在复合材料结构中使用缓慢增长方法是可能的,但必须解决获得与所选裂纹驱动力测量有关的损伤增长率方程的精确参数的必要性。
摘要:本文提出了一种分析方法,用于获取碳纤维增强塑料 (CFRP) 平板在循环压缩载荷下的冲击后损伤扩展情况。基于引入的参考损伤模式 (RDM) 假设,给出了损伤增长寿命的解决方案。通过使用有限元分析 (FEA) 分析裂纹驱动力与损伤尺寸的关系,可以确定获得损伤增长寿命的临界损伤尺寸。通过示例讨论和说明了损伤容限原理对包含冲击损伤的结构元件压缩-压缩循环载荷情况的适用性。使用引入的简化方法计算损伤增长寿命特征的结果表明,在复合材料结构中使用缓慢增长方法是可能的,尽管必须解决获得与所选裂纹驱动力测量有关的损伤增长率方程的精确参数的必要性。
摘要。高能粒子探测器 (HEPD) 模块用于测量地球磁层中捕获的电子和质子通量的倾斜角和能量,能量分别为 3-100 MeV 和 30-300 MeV。由于 CSES-02 卫星的发射,改进 HEPD 的一个有趣选择是为跟踪模块配备 ALPIDE 单片有源像素,该像素是专门为 CERN 的 ALICE 实验的 ITS 升级而开发的。在这项工作中,我们提出了一个模块化紧凑型粒子跟踪器项目,该跟踪器由 5 个转塔组成,利用配备混合集成电路 (HIC) 的 150 像素传感器,并由安装在铝制外壳中的碳纤维增强塑料 (CFRP) 板条支撑。所有设想的解决方案都经过了严格的资格测试,涉及振动和热应力。 HEPD-02 跟踪器项目预示着 CFRP 将大规模应用于科学和探索性质的太空计划。
TI 航天级器件具有不同级别的辐射耐受性,可支持低地球轨道、中地球轨道和地球同步轨道任务。不同的任务可能具有不同的辐射要求,具体取决于距离地球的距离和任务持续时间。本产品概述提供了德州仪器可以提供的航天温度设计、可用选项重要性的见解,以及客户需要将哪些航天设备纳入其系统的最佳决策指导。TI.com 提供航天增强塑料 (SEP)、抗辐射 (SP) QMLP 和抗辐射 QMLV 合格温度传感器。TI 的多样化产品组合提供不同尺寸选项、塑料与陶瓷以及不同的抗辐射选项供您选择。在选择航天设备之前,客户需要考虑系统在太空中的位置,了解系统旨在通过的辐射要求、愿意花费的成本、愿意使用的尺寸和表面积以及风险。
TEJAS 驾驶舱程序训练器 (CPT) 是一种三重显示教学/训练设备,帮助学员熟悉 Tejas 驾驶舱并练习发动机地面运行程序,无需停放飞机。CPT 的左侧和右侧控制台分别代表 Tejas 飞机的 LH 和 RH 控制台,主仪表板以及 Tejas 驾驶舱的 LH 和 RH 四分之一面板被分组在 CPT 的前部大型显示屏上。TEJAS CPT 硬件系统配置安装在一个符合人体工程学设计的机械面板中,称为系统实用程序面板 (SUP),由金属板和纤维增强塑料 (FRP) 制成。CPT 拥有 Tejas 玻璃驾驶舱的真实合成复制品,整个驾驶舱符合人体工程学分组并分为三个合成显示屏,其中 LH 和 RH 控制台为触摸操作,前部显示屏为大屏幕 LCD(非触摸),可通过鼠标远程操作。 Tejas CPT-SUP 的设计以保持“驾驶舱外观”和人体工程学为主要目标定义。
摘要:结构钢和混凝土是社会基础设施建设不可或缺的材料。然而,这些材料会随着时间的推移而发生降解,从而导致钢筋腐蚀。为了解决这个问题,人们使用纤维增强聚合物 (FRP) 进行加固。在本研究中,进行了拉伸试验,以评估 FRP 应用于缆索桥结构的材料特性。这些测试旨在研究提高粘结性能的各种参数。基于不同参数的实验,如果满足以下条件,则可以实现足够的粘结性能:砂浆水 ≤ 16%(无论制造商如何);劈裂深度与钢管长度比 ≥ 75%;砂浆注入方向向上/向下;以及使用纤维板加固。此外,试验中使用的钢管(长度为 410 mm,外径为 42.7 mm)在可加工性和成本效益方面表现最佳。通过进行更精确的测试来研究材料的基本特性,有可能实现更精确的条件以实现足够的粘结性能。这将有助于提高碳纤维增强塑料电缆在电缆桥架结构中的成本效益和安全性。