在癌症免疫治疗方法中,最常转移和批准用于临床治疗的是单克隆抗体(7)。西妥昔单抗是目前作为药物生产的主要抗体之一。西妥昔单抗是一种靶向 EGFR 的单克隆抗体,临床批准用于癌症免疫治疗。西妥昔单抗是一种嵌合抗体,这意味着它同时包含人类和小鼠蛋白质序列(8)。表皮生长因子受体 (EGFR) 是一种跨膜糖蛋白。它是 I 型受体酪氨酸激酶亚家族的成员,包括 HER1、HER2、HER3 和 HER4。EGFR 在大多数正常上皮组织中组成性表达(9)。已确定 EGFR 在许多癌症中过表达。EGFR 过表达与预后不良、总生存期缩短和/或转移风险增加有关。蛋白酪氨酸激酶的活性受到严格调控,因为它们是细胞生长、分化和死亡的介质 (10)。EGFR 抑制剂用于治疗不同类型的癌症,在这些癌症中,已发现 RTK 家族失调,从而导致
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关
目的:抑制p38有丝分裂原激活的蛋白激酶(MAPK)信号通路延迟分化并增加大多数物种中肌肉干细胞的增殖。在这里,我们旨在研究p38抑制剂(p38i)治疗对鸡肌干细胞增殖和分化的影响。方法:在胚胎第18天,从Hy-Line棕色鸡肉胚胎的肌肉组织中收集鸡肉干细胞,然后通过预制方法分离。细胞在补充二甲基亚氧化二甲基氧化二甲基氧化物或1、10、20μMP38I的生长培养基中培养4天,然后取代多达4个传递。通过分化培养基诱导了3天的分化。每次处理3次。结果:配对框7基因和肌源性因子5基因的增殖和mRNA表达以及p38-preated培养物中肌源分化标志物基因肌生成蛋白的mRNA表达明显高于对照(p <0.05),但在肌蛋白重链中的免疫染色和mRNA表达并不重要(MHC)。分化细胞培养物中累积的脂质液滴的油红O染色显示,p38-WERACETAL培养物中的脂质密度高于对照。然而,两组之间的掺杂标记基因基因过氧化物酶体增殖物激活受体伽马的表达并没有显着差异。结论:鸡肌干细胞中的p38抑制作用可改善细胞的增殖,但是对肌原性分化和脂质积累的影响需要进行其他分析。需要对鸡肉P38-MAPK途径进行进一步的研究,以了解肌肉和脂肪发育机制。
我们已证明,荧光 pHLIP 药物可靶向人类膀胱中的恶性病变,通过 pHLIP 向细胞内递送鹅膏毒肽毒素可抑制尿路上皮癌细胞增殖,并且 pHLIP-鹅膏毒肽可增强对 17p 缺失的癌细胞的效力,17p 缺失是尿路上皮癌中经常出现的突变。28 个离体膀胱标本来自接受机器人辅助腹腔镜根治性膀胱切除术治疗膀胱癌的患者,通过膀胱内孵育 15-60 分钟,使用浓度为 4-8 μM 的吲哚菁绿 (ICG) 或 IR-800 近红外荧光 (NIRF) 染料偶联的 pHLIP 进行处理。白光膀胱镜检查可识别出 47/58 (81%) 的恶性病变,而 NIRF pHLIP 膀胱镜检查可识别出 57/58 (98.3%) 的不同亚型和阶段的恶性病变,并可选择进行组织病理学处理。pHLIP NIRF 成像将诊断率提高了 17.3% (p < 0.05)。所有被白光膀胱镜检查漏诊的原位癌病例均通过 pHLIP 药物靶向治疗,并通过 NIRF 成像进行诊断。我们还研究了 pHLIP-鹅膏蕈碱与不同等级的尿路上皮癌细胞的相互作用。在浓度高达 4 μM 的情况下,pHLIP-鹅膏蕈碱处理 2 小时后,可对尿路上皮癌细胞的增殖产生浓度和 pH 依赖性抑制。在 pH6 下处理 2 小时后,对于 17p 丢失的细胞,pHLIP-鹅膏蕈碱的细胞毒性增强了 3-4 倍。 pHLIP 技术可能改善尿路上皮癌的管理,包括使用 pHLIP-ICG 对恶性病变进行成像以进行诊断和手术,以及使用 pHLIP-amanitin 通过膀胱内灌注治疗浅表性膀胱癌。
核干细胞素 ( NS ) 是一种优先在干细胞和癌细胞中表达的脊椎动物基因,它的作用是调节细胞周期进程、基因组稳定性和核糖体生物合成。NS 及其旁系同源基因 GNL3-like ( GNL3L ) 是在脊椎动物进化枝中从其直系同源基因 G 蛋白核仁 3 ( GNL3 ) 发生复制事件后出现的。然而,对无脊椎动物 GNL3 的研究有限。为了更好地了解 GNL3 基因的进化和功能,我们对水螅纲刺胞动物 Hydractinia symbiolongicarpus 进行了研究,这是一种群体水螅,在其整个生命周期中不断产生多能干细胞,并表现出令人印象深刻的再生能力。我们发现 Hydractinia GNL3 在干细胞和生殖系细胞中表达。GNL3 的敲低减少了不同年龄 Hydractinia 幼虫中有丝分裂和 S 期细胞的数量。通过 CRISPR/Cas9 对 Hydractinia GNL3 进行基因组编辑,导致菌落生长率降低、息肉再生能力受损、性腺形态缺陷和精子活力低下。总之,我们的研究表明 GNL3 是一种进化保守的干细胞和生殖系基因,参与 Hydractinia 的细胞增殖、动物生长、再生和有性生殖,并为 GNL3 和干细胞系统的进化提供了新的启示。
摘要。背景/目的:在筛选可选择性抑制含有突变型 (mt) KRAS 的癌症球体生长的化合物时,发现了 NPD10621,并研究了相关衍生物。材料和方法:用 12 种 NPD10621 衍生物处理表达野生型 (wt) KRAS (HKe3-wtKRAS) 和 mtKRAS (HKe3-mtKRAS) 的 HCT116 衍生 HKe3 球体的球体区域,并在三维漂浮 (3DF) 培养中进行测量。在 3DF 培养中用 NPD1018 (pyra-metho-carnil:PMC) 治疗几种癌症。在裸鼠测定中,确定了 50% 细胞生长抑制 (GI 50 ) 值。结果:在这 12 种衍生物中,PMC 是 HKe3-mtKRAS 球体生长最有效的抑制剂,毒性最小。此外,在所有测试的癌细胞系中均观察到 PMC 介导的生长抑制,与组织环境、驱动基因突变和耐药性无关,这表明 PMC 靶标对于癌症生长至关重要,且与环境无关。裸鼠试验中 PMC 的 GI 50 值为 7.7 mg/kg
此预印本的版权所有者此版本于 2022 年 6 月 29 日发布。;https://doi.org/10.1101/2022.06.29.497030 doi:bioRxiv preprint
癌症是每年影响数百万人的重大健康负担。结直肠癌 (CRC) 是第三大常见恶性肿瘤,而且不再仅限于发达国家。1 一般来说,癌症治疗包括手术、化疗和放疗。治疗策略的选择取决于肿瘤在原发组织和转移组织中的扩散情况,通常,联合治疗更受青睐。2 虽然细胞毒性化疗是消除呈指数级分裂的恶性细胞的主要选择,但它会产生不良反应。3 已经引入了更具体的抗癌靶向疗法,以最大限度地减少对正常细胞的毒性。尽管如此,靶向疗法通常与细胞毒性化疗相结合,以获得更好的临床效果。传统化疗的另一个主要问题是产生耐药性,而通过在多个层面靶向肿瘤细胞可能会取代这种耐药性。这些耐药细胞在治疗中存活下来并迁移到远处器官产生转移。4 旨在诱导细胞凋亡并抑制增殖、迁移和血管生成的理想抗癌药物可以提供良好的临床效果。现有的细胞毒性和靶向治疗药物可杀死快速增殖的细胞或靶向参与转移和血管生成的特定蛋白质。模式已转变为开发具有多方面作用和独特机制的抗癌药物。二叶酸是一种天然存在于许多植物物种中的糖苷,化学上与芳基萘配体有关。二叶酸的药理作用主要归因于其与
以剂量依赖性方式调节,同时,JAC1处理MDA-MB-231和SUM1315细胞24h后,Bax和cleaved-caspase3均上调(图3E)。细胞周期测定显示,用5 mM JAC1处理两种TNBC细胞24h后,G1期细胞增多,S期细胞明显减少。此外,JAC1对细胞周期阻滞的影响在SUM1315细胞中比在MDA-MB-231细胞中更敏感(图3F-I)。当用JAC1处理TNBC细胞24h时,p21和CDK6(不是CDK4)的表达增加,但cyclin D1被明显抑制(图3J)。数据还显示JAC1对p21的作用比对cyclin D1更敏感。综上所述,这些结果表明 JAC1 在细胞凋亡和细胞周期停滞中发挥双重作用。
直到最近,索拉非尼(7)和兰瓦替尼(8)是唯一被批准用于晚期HCC一线治疗的靶向疗法。尽管在过去几十年中不断寻求有效的高级HCC药物治疗,但患者的生存却没有显着改善。基于检查员040(9)和主题演讲224(10),Nivolumab和pembrolizumab被批准为索拉非尼后的二线治疗。然而,在2019年,第一线与索拉非尼(11)和第三阶段主题演讲240相对于安慰剂与安慰剂(12)的结果是负面的,导致全球批准失败。实际上,这些药物都无法证明具有统计学意义的生存益处。在2020年,Finn等人。(13)报道了Imbrave 150的结果,Imbrave 150的结果是一项临床试验,其中atezolizumab [反编程的细胞死亡配体配体1(PD-L1)单克隆抗体(MAB)]和贝伐单抗研究了对索拉替尼的贝伐单抗,以在第一线设置中治疗先进的HCC。这种组合疗法的无进展生存期(MPF)为6.8个月,索拉非尼单一疗法明显超过4.3个月。尽管在组合疗法组中未达到总体生存期(MOS),但它比索拉非尼组的13.2个月MOS(HR = 0.58,95%CI,0.42-0.79)长得多。因此,
