摘要:在本文中,提出并实现了Zeta-Zeta耦合的非分离多端子转换器。这个新的DC-DC多端子转换器促进了带有单个输出的输入侧的两个可再生能源的访问。zeta转换器拓扑促进了降低的输出电压波纹的高压增益。多端子转换器在最近的过去变得非常突出。但是在研究领域,没有文献证据证明了Zeta –Zeta转换器中使用的多端子转换器中使用的。这项研究工作提出了一个Zeta-Zeta多端子转换器,可再生能源系统的开关数量减少。在MATLAB/ SIMULINK环境中模拟了所提出的转换器,也被实现为硬件原型。将所提出电路的电压增益和效率与对应电路的多数拓扑进行了比较。仿真和硬件结果表明,所提出的拓扑在电压增益和效率方面的柜台零件上具有清晰的优势。
氟化氩 (ArF) 是目前波长最短的激光器,能够可靠地扩展到高增益惯性聚变所需的能量和功率。ArF 的深紫外光和提供比其他当代惯性约束聚变 (ICF) 激光驱动器更宽带宽的能力将大大提高激光目标耦合效率,并使驱动内爆的压力大大提高。我们的辐射流体动力学模拟表明,使用亚兆焦耳 ArF 驱动器可以获得大于 100 的增益。我们的激光动力学模拟表明,电子束泵浦 ArF 激光器的固有效率可以超过 16%,而效率第二高的氟化氪准分子激光器的固有效率约为 12%。我们预计,使用固态脉冲功率和高效电子束传输到激光气体(美国海军研究实验室的 Electra 设施已进行了演示),将 ArF 光传输到目标的“电插式”效率至少应达到 10%。这些优势可以推动开发尺寸适中、成本较低的聚变发电厂模块。这将彻底改变目前对惯性聚变能源过于昂贵和发电厂规模过大的看法。本文是讨论会议主题“高增益惯性聚变能源前景(第 1 部分)”的一部分。
我们展示了一种在半导体微腔激光器中创建空间局部状态的实验方法。特别是,我们塑造了具有非共振的,脉冲的光泵的准二维微腔激光器的空间增益曲线,以创建由于增益和非线性损耗的平衡而存在的空间局部结构,称为增益拟散的孤子。我们直接探测了这些局部结构的超快形成动力学和衰减,表明它们是在比索秒时尺度上创建的,比激光腔孤子更快的数量级。使用复杂的Ginzburg – Landau模型来重建所有实验观察到的特征和动力学,该模型明确考虑了半导体中的载体密度动力学。
连续波 (cw) 光子激发电子能量损失和增益光谱 (sEELS 和 sEEGS) 用于对纳米棒天线中光激发局部表面等离子体共振 (LSPR) 模式的近场进行成像。配备纳米操作器和光纤耦合激光二极管的光学传输系统用于同时照射 (扫描) 透射电子显微镜中的等离子体纳米结构。纳米棒长度不断变化,使得 m = 1、2 和 3 LSPR 模式与激光能量共振,并测量这些模式的光激发近场光谱和图像。还研究了各种纳米棒方向以探索延迟效应。光学和电子束模拟用于合理化观察到的模式。如预期的那样,奇数模式在光学上是明亮的,并导致观察到的 sEEG 响应。 m = 2 暗模式不会产生 sEEG 响应,但是,当倾斜到延迟效应起作用时,sEEG 信号就会出现。因此,我们证明了 cw sEEGS 是成像任一奇偶性全套纳米棒等离子体模式近场的有效工具。
在过去的几十年中,人们一直致力于探索具有强大光学增益和优异光物质相互作用特性的新兴材料,以开发光子和光电子器件,包括但不限于微激光器、单光子发射器、发光二极管、光电探测器等。先驱者们致力于先进的光学增益材料,涵盖从经典的 II-VI/III-V 半导体、新兴的二维半导体材料、有机染料到卤化物钙钛矿,这些材料对于优化器件性能和拓展前沿光子学/光电子学有着巨大的希望。同时,将这些材料打造成基础科学和工业技术的有力工具的科学和工程挑战仍然存在。该领域的快速发展有必要重点介绍其最新进展和挑战,这正是本期《中国科学材料》组织举办的及时专题“光增益材料在增强光-物质相互作用中的应用”的目的。此次重点介绍的部分原因是受到在新加坡举行的第十届国际先进技术材料会议(ICMAT 2019)期间组织的一次研讨会的启发,由所有客座编辑共同主持。光增益材料的广泛适用性高度依赖于固有的晶体和光学质量,与先进的制造技术密不可分。刘等人 [1] 的综述集中于卤化物钙钛矿半导体各种生长方法的最新研究。特别是陈等人。 [2] 提出在微流体反应器中连续流制备掺杂钙钛矿纳米晶体,这使得前体离子能够在密闭微通道中与稳定封闭的环境进行有效的物理混合,从而实现高质量的合成。控制
AT 增益图 Φ = ( G, φ ) 是一种图,其中函数 φ 为边的每个方向分配一个单位复数,并将其逆分配给相反的方向。相关的邻接矩阵 A (Φ) 是规范定义的。T 增益图 Φ 的能量 E (Φ) 是 A (Φ) 所有特征值的绝对值之和。我们研究 T 增益图顶点的能量概念,并为其建立界限。对于任何 T 增益图 Φ,我们证明 2 τ ( G ) − 2 c ( G ) ≤E (Φ) ≤ 2 τ ( G ) p
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。