强场物理中许多有趣的实验都需要产生长波长激光脉冲[1-4]。最近,在 1 kHz 或更高重复率下工作的少周期、载波包络锁相、mJ 级短波红外 (SWIR,1.4-3 µ m) 激光器方面取得了进展,推动了水窗口 (282 至 533 eV) 中阿秒 X 射线源的开发[5]。利用中波红外 (MWIR,3-8 µ m) 驱动激光器已经证明了光谱截止超过 1 keV 的高次谐波产生[6]。3.5-5 µ m 大气透射窗口内的高峰值功率 (100 千兆瓦级) 脉冲能够通过克尔透镜效应在空气中自聚焦形成细丝[7,8];这种脉冲是国防应用的理想选择,因为它们可以以极高的精度和最小的衰减对目标造成最大伤害。由于在 MWIR 波长区域工作的增益介质有限,光参量啁啾脉冲放大(OPCPA)成为最佳方法。1 µ m 激光器泵浦的氧化物非线性晶体,如砷酸钛钾(KTA),能够在 3.9 µ m 波长下产生 30 mJ、80 fs、20 Hz 脉冲[9]。2 µ m 泵浦源使基本可能的上限转换效率翻倍,并且可以使用非线性度更大的非氧化物晶体,如 ZnGeP 2(ZGP),d 36 = 75 pm/V [10 – 12]。ZGP 的热导率为 36 W/(m·K),是 KTA 的 20 倍,对于高重复率/高平均功率操作至关重要。在用 1.94 µ m Tm:光纤激光器泵浦时,Ho:YLF 能够将 2 µ m 皮秒脉冲放大到几十毫焦耳[13-15]。Ho 3 +的 5 I 8 和 5 I 7 流形分别包含 13 个和 10 个能级,如图 1 所示[16]。2.05 µ m 脉冲的放大归因于模拟的上激光能级 N 2 (在 5153 cm − 1 处)和下激光能级 N 1 (在 276 cm − 1 处)之间的发射跃迁。由于基态 N 0 (在 0 cm − 1 处)和下激光能级之间的能量差很小,Ho:YLF 被认为是准三能级增益介质。如图 1 所示,相关激光能级的粒子数随温度而变化,因此 Ho:YLF 等准三能级放大器的增益在很大程度上取决于温度。高能皮秒 Ho:YLF 激光器通常基于啁啾脉冲放大 (CPA)。在产生超过 20 mJ 能量的 2 µ m 皮秒 CPA 激光器中,前置放大器的脉冲由功率放大器增强。最终输出能量由输入脉冲能量和增强器的增益决定。最近,在 2016 年 11 月 1 日展示了一种使用再生放大器和两级增强器放大输出 56 mJ 的 Ho:YLF CPA 系统。
摘要。本文介绍了在 X 波段工作的高度集成固态功率放大器 (SSPA) 的设计和开发。最后的放大级采用 GaN 技术实现。据作者所知,这是高功率放大器中首次采用垂直方向放置最后的放大级,这可以显著缩小器件的占用空间,同时保持高输出功率和 PAE。该器件使用通过 SPI 接口控制的定制 BIAS ASIC 对整个 RF 链进行全数字控制,确保 SSPA 的高灵活性和稳定性。SSPA 的工作频率范围为 8.025–8.4 GHz,输入功率范围为 –20 dBm 至 0 dBm,输出功率为 20 瓦,功率附加效率 (PAE) 高达 35%。虽然所介绍的 SSPA 的主要应用是地球观测 (EO),但它也可以用于地面部分,例如雷达应用。
摘要 本文提出了一种适用于W波段的小型化宽带单极子片上天线(AOC)。该AOC基于130nm CMOS工艺,通过顶层M6采用六边形网格、底层M1采用电容性AMC(人工磁导体)实现小型化。首先,利用电磁仿真分析了不同模式的反射相位。其次,通过采用六边形网格将带AMC的AOC轴向尺寸进一步减小16.2%(与带AMC的直单极子天线相比),并通过分析网格角度优化了阻抗。提出的小型化单极子天线在81GHz处的尺寸为367um×194.2um(0.1λ 0 ×0.052λ 0 )。测量表明,该天线的阻抗带宽为31.5%(75-103GHz),在85GHz处峰值增益为-0.35dBi。所提出的天线具有已报道的最小尺寸,可应用于W波段FMCW雷达片上系统关键词:AMC,小型化单极天线,宽带天线,AOC分类:微波和毫米波器件,电路和模块
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
本文给出了由高能物理研究所设计、中国科学院微电子研究所制备的50 µm 厚低增益雪崩探测器 (LGAD) 传感器的模拟和测试结果。制备了三片晶圆,每片晶圆采用四种不同的增益层注入剂量。制备过程中采用了不同的生产工艺,包括改变 n++ 层注入能量和碳共注入。测试结果表明,从电容-电压特性来看,增益层剂量较高的 IHEP-IME 传感器具有较低的击穿电压和较高的增益层电压,这与 TCAD 模拟结果一致。Beta 测试结果表明,IHEP-IME 传感器在高压下工作时的时间分辨率优于 35ps,辐照前 IHEP-IME 传感器收集的电荷大于 15fC,满足 ATLAS HGTD 项目对传感器辐照前的要求。关键词:低增益雪崩探测器(LGAD),注入剂量,击穿电压,时间分辨率,电荷收集电子邮件地址:zhaomei@ihep.ac.cn (Mei Zhao)
摘要:本文介绍并讨论了一种用于分集接收模块的低频带 (LB) 低噪声放大器 (LNA) 设计,该模块适用于多模蜂窝手机。LB LNA 覆盖 5 个不同频段,频率范围从 617 MHz 到 960 MHz,5 刀单掷 (5PST) 开关用于选择不同的频段,其中两个用于主频段,三个用于辅助频段。所提出的结构涵盖从 -12 到 18 dB 的增益模式,增益步长为 6 dB,每种增益模式的电流消耗都不同。为了在高增益模式下达到噪声系数 (NF) 规格,我们在本设计中采用了具有电感源退化结构的共源共栅 (CS)。为了实现 S 11 参数和电流消耗规格,高增益模式(18 dB、12 dB 和 6 dB)和低增益模式(0 dB、-6 dB 和 -12 dB)的内核和共源共栅晶体管已被分开。尽管如此,为了保持较小的面积并将相位不连续性保持在 ± 10 ◦ 以内,我们在两个内核之间共享了退化和负载电感器。为了补偿工艺、电压和温度 (PVT) 变化的性能,该结构采用了低压差 (LDO) 稳压器和极端电压补偿器。该设计在65nm RSB工艺设计套件中进行,电源电压为1V,以18dB和-12dB增益模式为例,其NF分别为1.2dB和16dB,电流消耗为10.8mA和1.2mA,输入三阶截取点(IIP3)分别为-6dBm和8dBm。
摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。
气候和生物多样性危机已经来临。我们现在必须解决这个问题,因为如果我们把它留给子孙后代,那就太晚了。在过去的一个世纪里,我们地区已经失去了大量的生物多样性,我们必须与其他人联手恢复它,这不仅是为了它本身,也是为了支持增长和该地区的经济。这篇受欢迎的论文强调了需要解决的挑战和问题,以确保生物多样性净增益为自然服务,并得到从业者和利益相关者的信任。我相信,如果做得好,生物多样性净增益可以帮助扭转生物多样性的丧失。如果做得好,我们可以帮助该地区陷入困境的栖息地和物种,并为我们服务的社区带来好处。至关重要的是,恢复生物多样性将有助于我们缓解气候变化,并适应我们面临的不可避免的影响,如洪水和干旱。
气候和生物多样性危机已经来临。我们现在必须解决这个问题,因为如果我们把它留给子孙后代,那就太晚了。在过去的一个世纪里,我们地区丧失了大量生物多样性,我们必须与其他人携手恢复这些生物多样性,这不仅是为了生物多样性本身,也是为了支持该地区的增长和经济。这篇受欢迎的论文强调了需要解决的挑战和问题,以确保生物多样性净增益造福自然,并得到从业者和利益相关者的信任。我相信,如果做得好,生物多样性净增益可以帮助扭转生物多样性的丧失。如果做得好,我们可以帮助该地区陷入困境的栖息地和物种,并为我们服务的社区带来好处。至关重要的是,恢复生物多样性将有助于我们缓解气候变化,并适应我们面临的不可避免的影响,如洪水和干旱。