黑色素瘤是最具侵袭性的皮肤癌,人们已研究了多种治疗方法来治疗这种疾病,但耐药性仍然是传统疗法失败的重要因素。本文描述了海藻酸盐、壳聚糖、普鲁兰多糖及其组合纳米乳剂的开发、优化和特性,以及它们作为药物输送平台在黑色素瘤治疗中的潜在应用。设计了一种新型纳米乳剂输送系统,并通过确定体外药物释放、细胞活力 (MTT)、细胞凋亡 (ELISA) 和共聚焦显微镜对其进行了评估。对纳米乳剂对 BRAF 突变黑色素瘤 (A375) 和角质形成细胞 (HaCaT) 细胞的影响进行了比较分析,并选择“普鲁兰多糖-壳聚糖”纳米乳剂作为黑色素瘤药物输送的方法。用载有阿霉素的最佳纳米乳剂治疗 72 小时后,黑色素瘤细胞凋亡诱导率增加至 90%。同样,在同样的治疗中,黑色素瘤细胞的存活率降低了 70%。更重要的是,用阿霉素处理的 A375 细胞存活率为 100%,而用载有阿霉素的纳米乳剂处理的细胞存活率仅为 30%。所取得的结果表明药物载体的聚合物组合的重要性以及药物释放模式对治疗效率的影响。这为消除药物外排相关的化学耐药性提供了潜力。
摘要:根据世界卫生组织的数据,2020 年,结直肠癌 (CRC) 导致全球男女老少约 935,173 人死亡。现有的抗癌疗法包括化疗、放疗和抗癌药物,但治疗效果有限、副作用大且成功率低。这促使人们出现了几种新型治疗剂作为 CRC 的潜在疗法,包括合成和天然材料。口服和靶向药物输送系统是 CRC 治疗的有吸引力的策略,因为它们可以最大限度地减少副作用,增强抗癌药物的疗效。然而,口服药物输送至今仍面临着药物溶解度差、稳定性差和渗透性差等挑战。由于纳米粒子能够控制包封剂的释放、药物靶向性并减少给药次数,因此最近开发了各种口服纳米方法和靶向药物输送系统。壳聚糖聚合物独特的物理化学性质有助于克服口服药物输送障碍并靶向结肠肿瘤细胞。基于壳聚糖的纳米载体通过增强几种抗结直肠癌药物的稳定性、靶向性和生物利用度提供了额外的改进。改性壳聚糖衍生物还通过加强对封装材料对胃肠道 (GIT) 酸性和酶降解的保护,促进了 CRC 靶向性。本综述旨在概述 CRC 病理学、治疗和口服药物输送的障碍。它还强调了纳米技术在口服药物靶向输送系统中的作用以及对壳聚糖及其衍生物日益增长的兴趣。本综述总结了迄今为止研究基于壳聚糖的纳米载体在 CRC 治疗中的潜在应用的相关工作。关键词:壳聚糖、结直肠癌、纳米载体、口服输送、药物靶向、纳米技术
摘要:定期间隔短的短膜重复(CRISPR)和相关的CAS核酸酶(CAS9)是一种尖端的基因组编辑技术,它通过使用短RNA分子来指定靶向DNA序列,通过使用短RNA分子,帮助内核酶Cas9在负责遗传性疾病的基因修复中的核酸内切酶Cas9。但是,应用此技术的主要问题是开发有效的CRISPR/CAS9传递系统。共识依赖于用纳米颗粒(NP)代表的非病毒输送系统的使用。壳聚糖是一种安全的生物聚合物,用于几种生物医学应用,尤其是基因递送的NP。的确,它在基因递送系统的背景下显示了几个优点,例如,其骨架上有带正电荷的氨基组的存在可以与带负电荷的核酸形成稳定的纳米复合物建立静电相互作用。但是,其主要局限性包括生理pH值的溶解度差和有限的缓冲能力,可以通过功能化其化学结构来克服。本评论对基于壳聚糖的CRISPR/CAS9传递系统的不同方法进行了批判性分析以及未来发展的建议。
1. 引言 提高药物溶解度、渗透性和生物利用度一直是其商业化面临的主要挑战之一。在这方面,药物输送系统已被开发成一种有前途的方法 [1,2]。随着纳米技术的进步,人们开发出一类新型纳米粒子,它具有多种优点,如提高药物溶解度、减少所需剂量、持续释放药物、靶向输送药物和提高生物利用度 [3,4]。合成 [5] 和天然聚合物 [6,7] 及其组合 [8] 已被用于药物输送。树胶、粘液和多糖等天然聚合物无毒、生物相容性好、价格低廉且广泛可用。在多糖中,海藻酸钠 (SA) 和壳聚糖 (CS) 已被广泛用于输送不同的药物,例如一种新型药物输送系统 [9–14]。SA 是一种可生物降解且生物相容性的天然聚合物,可导致各种药物凝固。 SA 由 (1-4) 连接的-D-甘露糖醛酸 (M) 和-L-古洛糖醛酸 (G) 以各种排列和比例组成。这种生物聚合物可以在二价阳离子(如 Ca 2+ 、Ba 2+ 、Sr 2+ 和 Zn 2+ )存在下形成水凝胶。此类水凝胶结构可以包封药物,可用于设计 DDS(药物递送系统)[15,16]。多项研究集中于开发用于口服药物控制递送的海藻酸钙 (CA) 珠 [17–19]。CS 是一种线性、生物且无毒的多糖,其中 D-葡萄糖胺和 N-乙酰-D-葡萄糖胺单元通过 β-(1-4) 糖苷键连接。CS 可通过部分破坏几丁质来分离。这种天然多糖已广泛应用于 DDS [20–22]。珠粒中 CA 和 CS 的交联可能对医学和药物研究有用。与组成它们的聚合物相比,这种混合系统可以提供更高的稳定性 [23]。CA 和 CS 纳米载体 (CA-CS NC) 在 DDS 中的应用最近引起了极大关注。例如,Nalini 等人合成了 SA/CS 纳米颗粒 (NP) 用于药物输送,从而提高了治疗效果和疗效 [24]。
摘要:几丁质及其衍生物壳聚糖是自然界中极为丰富的聚合物,存在于各种海洋和非海洋物种的外壳和外骨骼中。由于它们具有生物相容性、生物降解性、无毒性和非免疫原性等优良特性,它们因其巨大的潜在生物医学应用而受到关注。壳聚糖的多阳离子表面使其能够与药物分子形成氢键和离子键,这是其最有用的特性之一。由于壳聚糖具有生物相容性,因此可用于药物输送系统。壳聚糖基纳米粒子的开发也促进了壳聚糖作为局部输送药物的药物输送系统的重要性。此外,几丁质可用于癌症治疗,作为将抗癌药物输送到特定部位的载体,并通过降低细胞活力发挥抗增殖作用。最后,壳聚糖可用作伤口敷料,以促进皮肤上皮细胞的更快再生和成纤维细胞的胶原蛋白生成。正如本综述中讨论的那样,几丁质和壳聚糖在医学领域有着多种应用。认识到这两种聚合物的生物医学应用对于组织工程和纳米生物技术的未来研究至关重要。
番石榴的后衰减后,主要是由储存时间中的微生物物种引起的。因此,分离出可能导致番石榴后腐烂的真菌和细菌物种分离并评估低分子量(LMW)壳聚糖与纳米二氧化物(Nano Sio 2)的抗菌和抗真菌能力(LMW)壳聚糖结合使用。这项研究成功地隔离了四种真菌物种,即热孢子虫,cladosporium sphaerospermum,Aspergillus wentii,colletototrichum acutatum和三个细菌种类,不,无论是azotobacter sp。发现,有0.04%纳米SIO 2和1%低分子壳聚糖44.5 kDa的混合物能够以最高的抗菌区直径和生长真菌的最低直径进行测试。这项工作为延长番石榴的延长货架寿命的潜在化合物。
摘要简介:具有严格控制活性的血脑屏障参与生物活性分子从血液到大脑的协调转移。在不同的传递方法中,基因传递被认为是治疗多种神经系统疾病的有前途的策略。由于缺乏合适的载体,外源遗传元素的转移受到限制。与此相关,设计用于基因传递的高效生物载体具有挑战性。本研究旨在使用 CDX 修饰的壳聚糖 (CS) 纳米粒子 (NPs) 将 pEGFP-N1 质粒传递到脑实质中。方法:在此,我们使用与三聚磷酸钠 (TPP) 配制的双功能聚乙二醇 (PEG) 通过离子凝胶化法将 CDX(一种 16 个氨基酸的肽)连接到 CS 聚合物上。使用 DLS、NMR、FTIR 和 TEM 分析对开发的 NPs 及其与 pEGFP-N1 的纳米复合物 (CS-PEG-CDX/pEGFP) 进行了表征。对于体外试验,使用大鼠 C6 胶质瘤细胞系来测定细胞内化效率。使用体内成像和荧光显微镜研究了小鼠腹膜内注射纳米复合物后的生物分布和脑定位。结果:我们的结果表明 CS-PEG-CDX/pEGFP NPs 以剂量依赖性方式被胶质瘤细胞吸收。体内成像显示成功进入脑实质,绿色荧光蛋白 (GFP) 作为报告蛋白的表达表明了这一点。然而,开发的 NPs 的生物分布也明显存在于其他器官中,尤其是脾脏、肝脏、心脏和肾脏。结论:根据我们的结果,CS-PEG-CDX NPs 可以为将脑基因传递到中枢神经系统 (CNS) 提供安全有效的纳米载体。
配制干粉吸入器 (DPI) 时需要具有某些特性的合适赋形剂,以将抗结核 (TB) 药物输送到肺部并在肺部和肺泡巨噬细胞中提供足够的药物浓度,以克服活动性和潜伏性结核感染。本研究旨在探索壳聚糖和海藻酸盐的组合在配制利福平 DPI 中的作用。使用不同组合的壳聚糖和海藻酸盐通过喷雾干燥制备利福平 DPI。对所得利福平干粉的粒度分布、形态、水分含量、药物含量和包封率进行了表征。除了在 pH 7.4 的磷酸盐缓冲液(含 0.05% 十二烷基硫酸钠)和 pH 4.5 的邻苯二甲酸酯缓冲液中的溶解研究外,还进行了对细胞系 A549 的细胞毒性研究。 DPI F3(RIF-Ch-Alg 2:1:1)中壳聚糖和海藻酸盐的组合在模拟肺液(2 小时内 78.301% ± 1.332%)和模拟巨噬细胞液(2 小时内 41.355% ± 1.259%)中均提供了利福平 DPI 的合适药物释放曲线。DPI F3 还具有 11.4288 ± 1.259 µm 的空气动力学粒径,并且在浓度高达 0.1 mg/ml 时也被认为对肺上皮细胞(活力 89.73%)是安全的。总之,壳聚糖和海藻酸盐的组合是一种有前途的载体,可用于开发具有适合结核病治疗特性的干粉吸入器。
摘要 他莫昔芬 (TMX) 用于治疗早期激素受体阳性乳腺癌。本研究旨在评估 NPs 在靶向递送 TMX 治疗 MCF7 和 TMX 耐药 MCF7 乳腺癌细胞系方面的潜力。为此,我们创建了一种靶向递送系统,其中包括涂有透明质酸的壳聚糖 NPs (HA-CS NPs),并在体外进行了检查。首先使用离子凝胶法制备壳聚糖 NPs 并装载 TMX,以制备药物递送系统。然后,通过将壳聚糖的氨基与透明质酸的羧基交联来涂覆载有 TMX 的 CS NPs。然后对开发的 TMX 递送系统进行优化和表征,以用于颗粒制备、药物释放和针对癌细胞。HA-CS 粒径为 210 nm,其 zeta 电位为 + 25 mv。 TMX 在 NPs 中的包封率为 55%。在酸性 pH(5 – 6)下从 NPs 中释放的 TMX 高于生理 pH(7.4)。负载 TMX 的 HA-CS NPs 对 MCF7 和 TMX 抗性的 MCF7 细胞的细胞毒性作用明显高于负载 TMX 的 CS NPs 和游离药物。与负载 TMX 的 CS NPs 和游离 TMX 相比,研究结果证实了负载 TMX 的 HA-CS NPs 对 MCF7 和 TMX 抗性的 MCF7 癌细胞具有显著的抑制作用。
简介二氧化钛纳米管阵列 (TNA) 在生物医学领域的潜在应用已得到广泛认可。1-3 TNA 具有多种特性,可以满足生物医学需求,例如增强纳米表面与细胞之间的相互作用、药物包封和控制释放 2 以及亲水性纳米表面,可以防止细菌粘附。3 之前已广泛探索将抗菌药物加载到 TNA 中,目的是减少植入后手术,从而导致植入排斥。4 抗菌负载 TNA 的成功开发为将化疗药物加载到 TNA 上开辟了新的机会 5 ,这以前被认为是一个繁琐的过程,因为这些药物,尤其是基于铂的药物,6 对光敏感且致癌。顺铂 (CDDP) 是一种