摘要 统计力学提供了一个框架,用于描述大型复杂多体系统的物理特性,仅使用几个宏观参数来确定系统的状态。对于孤立的量子多体系统,这种描述是通过本征态热化假设 (ETH) 实现的,该假设将热化、遍历性和量子混沌行为联系起来。然而,在强无序相互作用多体系统的动力学中,通过数值和实验发现的稳健多体局部化 (MBL) 机制,在有限的系统尺寸和演化时间下没有观察到热化趋势。虽然 MBL 机制的现象学已经确立,但核心问题仍未得到解答:在什么条件下 MBL 机制会产生 MBL 相,其中即使在无限系统尺寸和演化时间的渐近极限下也不会发生热化?本综述重点介绍了最近的数值研究,旨在阐明 MBL 相的状态,并确定了有关 MBL 相的关键未决问题。
已经投入了很大的效果,用于研究量子化学[1-4],凝结物理学[5-7],宇宙学[8-10]以及高能量和核物理学[11-16]的问题[11-16],具有数字量子计算机和模拟量子模拟器[17-22]。一个主要的动机是加深我们对密切相关的多体系统(例如结合状态的光谱)的基态特性的传统棘手特征的理解。另一个是推进散射问题的最新技术,这些问题提供了有关此类复杂系统的动态信息。在这项工作中,我们的重点将放在相对论量子场理论中为高能量散射和多粒子产生的量子算法的问题。我们的工作是在量子铬动力学(QCD)中提取有关Hadron和Nuclei的性能的动态信息的有前途但遥远的目标。QCD中量子信息科学可以加速我们目前的组合能力是核多体系统中的低能量散射的 在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。QCD中量子信息科学可以加速我们目前的组合能力是核多体系统中的低能量散射的 在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。 例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。在核多体系统中[23,24],超层流性离子离子碰撞中的热化过程[25] [25]夸克和脾气吹入黑龙喷头[34,35]。例如,两个喷气片段化函数和DIS结构功能都需要计算Minkowski SpaceTime中电流的自相关功能。这对构建以计算欧几里得时空相关因子的经典蒙特卡洛方法提出了挑战[36-43]。量子设备有可能克服经典计算机在解决上述许多问题时的局限性。目前的限制是,散射问题涉及大量的空间(动量)和时间(能量)尺度,并要求对大量(局部)量子型操作员进行量子模拟。当今NISQ ERA技术仅限于几十个未纠正的量子台上的NISQ ERA技术具有挑战性[22]。正如约旦,李和普雷基尔[44,45]在精液论文中所讨论的那样,量子模拟相对论量子型理论中的散射问题需要晶格离散化,而在骨质理论的情况下,则是field eld opertor的局部希尔伯特空间的截断。从广义的重归化组(RG)的意义上[46]的意义上,可以将这种数字化视为定义低能量效能理论的定义。我们将在这里争论,从这个角度来看,数字化方案不一定需要基于本地运算符的分解,而是更多
量子混沌本质上很难表征。因此,多体系统中量子混沌的精确定义仍然难以捉摸,我们对量子混沌系统动力学的理解仍然不够充分。这种理解的缺乏是理论物理学中许多未解决的问题的核心,例如量子多体系统中的热化和传输,以及黑洞信息丢失。它也促使从凝聚态物理学到量子引力等各个物理学分支对量子混沌重新产生兴趣[1]。另一方面,混沌经典系统的特点是它们对初始条件的敏感依赖性:在几乎相同的初始状态下准备的两个这样的系统副本(即相空间中相隔非常小距离的两个不同点),将随着时间的推移演变成相距很远的配置。更准确地说,相空间中两点之间的距离随着
Hayden-Preskill协议是黑洞信息悖论的Qubit玩具模型。基于争夺的假设,发现量子信息被立即从模拟黑洞的量子多体系统中泄漏出来。在本文中,我们将规程介绍了系统具有对称性并研究对称性如何影响信息泄漏的情况。我们特别关注向上旋转数量的保证。开发一种部分去耦方法,我们首先表明对称性会导致泄漏延迟和信息残余。然后,我们澄清它们背后的物理:延迟的特征是与对称性相关的系统的热力学特性,并且信息递归与初始状态的对称破坏密切相关。这些关系将信息泄漏概率桥接到量子多体系统的宏观物理学上,并允许我们仅根据系统的物理性质来对信息进行泄漏。
量子纠缠不仅对于理解厄米多体系统起着至关重要的作用,而且对于非厄米量子系统的研究也具有重要的意义。在本文中,我们利用双正交基中的微扰理论,解析地研究了非厄米自旋梯的纠缠哈密顿量和纠缠能谱。具体来说,我们研究了耦合的非厄米量子自旋链之间的纠缠特性。在强耦合极限(J rung ≫ 1)下,一阶微扰理论表明,纠缠哈密顿量与具有重整化耦合强度的单链哈密顿量非常相似,从而可以定义一个临时温度。我们的研究结果为非厄米系统中的量子纠缠提供了新的见解,并为开发研究非厄米量子多体系统中有限温度特性的新方法奠定了基础。
摘要 舰载机滑跃起飞飞行条件特殊、飞行速度低,对飞行安全构成威胁。处理该多学科交叉问题,需要综合考虑航母运动、飞机动力学、起落架和海况风场等因素。针对舰载机滑跃起飞的具体海军作战环境,建立了涉及舰载机、飞机、起落架运动实体,涉及起飞指令、控制系统和甲板风扰动的多体系统一体化动力学仿真模型。基于Matlab/Simulink环境,实现了多体系统仿真。通过舰载机滑跃起飞算例仿真,验证了模型的有效性和结果的合理性。该仿真模型与软件适用于舰载机起飞性能、飞行品质与安全、起落架载荷影响、航母甲板参数等多学科交叉问题的研究。ª 2013 CSAA & BUAA。由 Elsevier Ltd. 制作和托管。保留所有权利。
摘要 近几年来,人们对用于太空应用的多功能可重构阵列的兴趣日益浓厚,并提出了几种针对不同任务需求的概念。然而,尚未找到一个引人注目的应用来证明其相对于传统系统更高的成本和复杂性是合理的。本文提出了一种用于小型可重构航天器的姿态控制系统 (ACS) 的设计新方法。它将利用多体阵列模块相对于彼此旋转产生的动量守恒内部扭矩。目标是相对于最先进的 ACS 实现更好的效率、准确性和稳健性性能,这是小型航天器技术的瓶颈。本文研究了使用内部关节扭矩控制姿态的平面多体阵列的特征行为。为此,将展示和讨论相关的重新定向轨迹。参照该领域的先前研究,讨论了考虑模块撞击的最佳姿态控制轨迹,并从物理和数学角度详细解释了动量保持机动的动力学。结果表明,该概念有待进一步发展。
对分离的量子多体系统中热化的研究具有悠久的历史,可以追溯到发展统计力学的时代。自然界中大多数量子多体系统都被视为热量化,而有些则从未达到热平衡。中心问题是阐明给定的系统是否热效化(以前已经解决但未解决)。在这里,我们表明这个问题是不可决定的。当系统仅限于具有最接近邻居相互作用的一维移位系统时,最终的不确定性甚至适用,并且初始状态是固定的乘积状态。我们构建了一个编码可逆通用图灵机的动力学的哈密顿族人家族,在这种动力学中,放松过程的命运会大大变化,具体取决于图灵机器是否停止。我们的结果表明,没有一般定理,算法或系统的程序来确定任何给定的哈密顿素体中存在或不存在热化。
选择后的过程可用于研究量子多体系统和量子场理论(QFTS)的动态特性。例如,培训测量的非单身动态提供了一种用于控制多体系统的新工具,从而产生了测量引起的相变[1,2]。选择后在黑洞最终提案中也起着关键作用[3],为黑洞信息拼图提供了可能的解决方案。尽管由于鹰辐射而引起的蒸发过程[4,5]可能会将初始纯状态变成混合状态[6],但最终状态在施加在空间外奇异性上的状态下仍然是纯净的,请参见。图。1。但是,已经指出,最终状态必须非常特别才能保留信息[7]。在[8,9]中讨论了最终状态建议与平滑视野的存在之间的张力,最近在[10]中提出了解决方案。另一方面,黑洞蒸发过程中的单位性要求霍金辐射和黑洞之间的量子纠缠量