感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
开放式摄取的人类对象相互作用(HOI)的构图与检测以自然语言为指导的新型HOI的问题有关,这对于不认为以人为中心的场景至关重要。然而,先前的零射HOI检测器通常使用相同水平的图形图来模拟距离的HOI,从而在包含具有较大距离的人类对象对的场景中导致次优性能。此外,这些检测器主要依赖类别名称,并概述语言可以提供的丰富上下文信息,这对于捕获通常很少见的开放词汇概念至关重要,而单独使用类别名称的词汇量不佳。在本文中,我们引入了一种新型的端到端开放词汇HOI检测框架,该框架具有有条件的多级解码和细粒度的semantic增强(CMD-SE)(CMD-SE),从而利用了视觉语言模型(VLMS)的潜力。具体来说,我们建议通过在两部分匹配过程中结合软性结合来对具有不同特征图的不同距离的人类对象对进行建模。更重要的是,通过利用大型语言模型(LLM),例如GPT模型,我们利用了他们广泛的世界知识来生成人体部分状态的描述,以进行各种相互作用。然后,我们整合了人体部分的泛化和细粒语义,以证明相互作用的识别。在两个数据集(Swig-hoi和Hico-det)上进行的实验结果表明,我们提出的方法达到了最新的方法,可以实现开放的词汇HOI检测。代码和模型可在https://github.com/ltttpku/cmd-se-版本中使用。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
2024 年 4 月 17 日 — 2019 年至 2022 年期间,美国军方和情报机构授予大型科技公司合同,最高金额至少为 530 亿美元......
➢这是一个欺骗深神经网络(DNN)的实验:在第二和第四张图像中,工程师仅保留了系统用于识别吉他和企鹅的系统的元素,并更改了其余的所有内容,以使系统仍然像吉他和企鹅一样“看到”他们。➢Goodfellow等人的作品。(2014)从普遍的扰动开始打开了进一步发展的大门(Moosavi-Dezfooli等人。2017)最近的一个像素攻击,该攻击显示了如何通过在输入图像中更改一个像素来欺骗神经网络。笔记本在这里一张像素攻击原始纸
基于快速LI +传导固体电解质(例如Li 7 La 3 Zr 2 O 12(LLZO))的抽象全稳态电池(LLZO)提供了对安全,不易燃率和温度耐受能量存储的透视。尽管有希望,但整个电池组件的陶瓷处理即将达到理论能力,并找到处理大规模和低成本电池电池的最佳策略仍然是一个挑战。在这里,我们解决了这些问题,并报告了由Li 4 Ti 5 O 12 / C- Li 6.25 Al 0.25 la 3 Zr 2 O 12 / Metallic Li提供的能力约70 - 75 AH / kg的固态电池电池,且可逆自行车以2.5 a / kg的速率(用于2.5 –1.0 –1.0 v,95 c,95°C)。发现,在固体电解质电极界面处能力增加和LI +转移是谷物及其连通性的紧密嵌入,可以通过细胞制备过程中的等速压力来实现。我们建议,通过确保在电解质电极界面上确保良好的谷物接触,可以在加工过程中进行简单的陶瓷处理,例如加工过程中的施加压力。在野外的石榴石型全稳态电池组件中,证明了
将驾驶行为适应新的环境,库斯和法律是自主驾驶中的一个长期问题,排除了澳大利亚车辆(AVS)的广泛部署。在本文中,我们提出了LLADA,这是一种简单而强大的工具,它使人类驾驶员和自动驾驶汽车都可以通过调整其任务和动作计划来在新的地方进行访问规则,从而在任何地方开车。llada通过利用大型语言模型(LLMS)在解释本地驾驶员手册中的流量规则方面的令人印象深刻的零弹性可推广性来实现这一目标。通过广泛的用户研究,我们表明LLADA的说明可用于消除野外野外未受的情况。我们还展示了LLADA在现实世界数据集中适应AV运动计划策略的能力; Llada优于我们所有指标的基线计划。请查看我们的网站以获取更多详细信息:Llada。
我们业务中发现的高风险领域 虽然现代奴隶制在所有国家都存在,但我们会考虑与现代奴隶制相关的特定地区风险,例如,移民工人人口众多、就业和劳动法执法较弱或现代奴隶制盛行的国家。我们了解,我们供应链中的国家可能存在更高的现代奴隶制风险,需要与我们的供应商和业务合作伙伴进行额外的尽职调查和合作。我们还了解并认识到,虽然现代奴隶制在任何人群中都存在,但有些群体比其他群体更容易受到伤害,包括:外国移民工人;合同工、代理工和临时工;难民、寻求庇护者、少数民族和宗教少数群体以及青年或学生工人。我们的供应链仍然是业务中风险最高的领域,因此我们继续确保采取相关措施减轻风险,并遵循上述做法,以消除与不合乎道德的供应商合作的可能性。通过确保我们的供应商签署《HMSHost 供应商行为准则》来管理这一风险。我们的承诺 公司和 Avolta 集团为在整个业务范围内预防现代奴隶制方面取得的进展感到自豪。但是,我们知道还有更多进展需要取得,Avolta 集团和公司正在努力实现这一目标。 我们采取的措施的有效性以及我们如何衡量这些措施 我们仍然致力于定期审查我们的政策和做法,如果这些政策和做法没有被证明是有效的,我们将做出任何必要的改变。我们继续能够通过与供应商的书面协议清楚地记录我们的合规性。 2023 年,公司尚未获悉其业务或供应链中存在或以前发生过人口贩运或现代奴隶制的情况。我们没有正式的 KPI 来监控我们的进展,但未来公司将考虑如何有意义地衡量其在监控和防止现代奴隶制和人口贩运方面取得的进展。
1 名古屋大学材料与系统研究所,日本名古屋 2 名古屋大学电气工程系,日本名古屋 电子邮件:{imanaka; s.sugimoto; tkato}@imass.nagoya-u.ac.jp;t.bigssk@gmail.com 摘要 — 可再生能源对于向孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的 PV 输出,但需要减少 PV 输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少弃电。自来水系统也适合 DR 资源,因为许多自来水系统都有大型水箱或水坝作为蓄水池。为了充分利用自来水系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文首先建立了包含多个需求响应资源的孤立电力系统优化模型,作为制定协调控制方法的第一步。对比了2周优化和1天优化下需求响应资源的运行情况,分析了5种光伏容量设置下长期规划的效果。仿真结果表明,需求响应协调控制的适用规则随季节和光伏安装容量的不同而不同。
