OpenAI代表Stargate邀请合格方提交建议,以实现大规模AI数据中心的开发和建设。具体来说,Openai正在寻求地点(土地和权力)建议。目的是建立支持高级AI工作量,有助于经济发展并实现OpenAI的使命的多高夸瓦基础设施舰队。此RFP寻求提出的建议,以解决一套全面的要求,并具有确定地点和权力的特定意图,这使OpenAI的基础设施路线图能够。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
2024 年 4 月 17 日 — 2019 年至 2022 年期间,美国军方和情报机构授予大型科技公司合同,最高金额至少为 530 亿美元......
• 本配置文件中显示的业绩结果可能包括加入该策略的摩根士丹利账户的综合数据。这些结果在配置文件的投资结果和投资组合季度回报部分中未加阴影,并带有 Select UMA 标签。 • 结果还显示了在 Select UMA 计划中启动该策略之前,管理人自己投资于其投资策略版本的账户的综合数据。这些结果以灰色阴影显示并标记为管理人。虽然这一业绩很重要,但它并未反映摩根士丹利在实施该策略方面所扮演的角色,该角色反映在配置文件的投资结果和投资组合季度回报部分的未加阴影部分中。摩根士丹利与管理人合作,向其客户提供该策略。因此,在过渡月之后,摩根士丹利不会显示管理人自己投资于其投资策略版本的账户的综合数据。因此,管理人的结果和策略的结果可能会有所不同,如下文进一步讨论的那样。 • 如果经理的业绩和策略的业绩之间的过渡月份出现在某个季度的中间,则该季度或年份将在概况的“投资业绩”和“投资组合季度回报”部分中以蓝色标出,并标有“过渡”字样。
1 名古屋大学材料与系统研究所,日本名古屋 2 名古屋大学电气工程系,日本名古屋 电子邮件:{imanaka; s.sugimoto; tkato}@imass.nagoya-u.ac.jp;t.bigssk@gmail.com 摘要 — 可再生能源对于向孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的 PV 输出,但需要减少 PV 输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少弃电。自来水系统也适合 DR 资源,因为许多自来水系统都有大型水箱或水坝作为蓄水池。为了充分利用自来水系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文首先建立了包含多个需求响应资源的孤立电力系统优化模型,作为制定协调控制方法的第一步。对比了2周优化和1天优化下需求响应资源的运行情况,分析了5种光伏容量设置下长期规划的效果。仿真结果表明,需求响应协调控制的适用规则随季节和光伏安装容量的不同而不同。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
我们业务中发现的高风险领域 虽然现代奴隶制在所有国家都存在,但我们会考虑与现代奴隶制相关的特定地区风险,例如,移民工人人口众多、就业和劳动法执法较弱或现代奴隶制盛行的国家。我们了解,我们供应链中的国家可能存在更高的现代奴隶制风险,需要与我们的供应商和业务合作伙伴进行额外的尽职调查和合作。我们还了解并认识到,虽然现代奴隶制在任何人群中都存在,但有些群体比其他群体更容易受到伤害,包括:外国移民工人;合同工、代理工和临时工;难民、寻求庇护者、少数民族和宗教少数群体以及青年或学生工人。我们的供应链仍然是业务中风险最高的领域,因此我们继续确保采取相关措施减轻风险,并遵循上述做法,以消除与不合乎道德的供应商合作的可能性。通过确保我们的供应商签署《HMSHost 供应商行为准则》来管理这一风险。我们的承诺 公司和 Avolta 集团为在整个业务范围内预防现代奴隶制方面取得的进展感到自豪。但是,我们知道还有更多进展需要取得,Avolta 集团和公司正在努力实现这一目标。 我们采取的措施的有效性以及我们如何衡量这些措施 我们仍然致力于定期审查我们的政策和做法,如果这些政策和做法没有被证明是有效的,我们将做出任何必要的改变。我们继续能够通过与供应商的书面协议清楚地记录我们的合规性。 2023 年,公司尚未获悉其业务或供应链中存在或以前发生过人口贩运或现代奴隶制的情况。我们没有正式的 KPI 来监控我们的进展,但未来公司将考虑如何有意义地衡量其在监控和防止现代奴隶制和人口贩运方面取得的进展。
将驾驶行为适应新的环境,库斯和法律是自主驾驶中的一个长期问题,排除了澳大利亚车辆(AVS)的广泛部署。在本文中,我们提出了LLADA,这是一种简单而强大的工具,它使人类驾驶员和自动驾驶汽车都可以通过调整其任务和动作计划来在新的地方进行访问规则,从而在任何地方开车。llada通过利用大型语言模型(LLMS)在解释本地驾驶员手册中的流量规则方面的令人印象深刻的零弹性可推广性来实现这一目标。通过广泛的用户研究,我们表明LLADA的说明可用于消除野外野外未受的情况。我们还展示了LLADA在现实世界数据集中适应AV运动计划策略的能力; Llada优于我们所有指标的基线计划。请查看我们的网站以获取更多详细信息:Llada。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
