在本研究中,通过标准晶圆级 (WL) 和 PL (PL) 测试评估电迁移 (EM) 铜线的可靠性。由于这些测试的速度非常快,因此与所有可靠性研究一样,主要问题之一是报告在使用条件下发生的故障现象的有效性。众所周知,WL 已被广泛用于在高应力条件下对大批量进行快速 EM 工艺监控。另一方面,在工艺鉴定方案中使用应力条件较低的 PL 测试。我们将本研究的后续内容作为参考,通过各种工艺评估 WL 测试结果。因此,本文讨论了 WL 与 PL 相比,在有效报告不同 Cu 线工艺修改的可靠性性能变化方面的能力。从寿命变化和标准偏差演变方面比较了 WL 可靠性和 PL 可靠性的结果。仅发现有限的相关性,这表明两种方法的故障机制并不相同。此外,本研究的结果强调了定义与大容量监控兼容的新的可靠的电磁测试结构和方法的必要性。
摘要 — 量子计算机为特定的计算密集型经典问题提供了更快的解决方案。然而,构建容错量子计算机架构具有挑战性,需要集成多个量子位和优化的信号路由,同时保持其量子相干性。由于各种元件之间的材料和热力学不匹配,在平面单片器件架构中实验实现具有多种功能组件的量子计算机具有挑战性。此外,它需要复杂的控制和路由,导致寄生模式和量子位相干性降低。因此,可扩展的中介层架构对于在保持量子位相干性的同时合并和互连复杂芯片内的不同功能至关重要。因此,异构集成是扩展量子位技术的最佳解决方案。我们提出了一种异构集成量子芯片光电子中介层作为高密度可扩展量子位架构的解决方案。我们的技术可实现大批量生产,并为片上、芯片到芯片以及低温到外界的互连提供新颖的光学 I/O 解决方案。
随着极紫外 (EUV) 光刻技术进入大批量生产,半导体行业已将光刻波长匹配的光化图案化掩模检测 (APMI) 工具视为 EUV 掩模基础设施的主要空白。现在,已经开发出一种光化图案化掩模检测系统来填补这一空白。结合开发和商业化 13.5nm 波长光化空白检测 (ABI) 系统的经验以及数十年的深紫外 (DUV) 图案化掩模缺陷检测系统制造经验,我们推出了世界上第一个高灵敏度光化图案化掩模检测和审查系统 ACTIS A150(ACTinic 检测系统)。生产此 APMI 系统需要开发和实施新技术,包括高强度 EUV 源和高数值孔径 EUV 光学器件。APMI 系统具有高分辨率、低噪声成像,对缺陷具有极高的灵敏度。它已证明能够检测出印刷晶圆上估计光刻影响为 10% CD 偏差的掩模缺陷。
ACTA家具公司开展两项主要活动:工业分包和布局。工业分包包括生产由 MDF 制成的涂漆厨房门、浴室门和办公室门,主要是在较小程度上进行印刷,然后涂漆。例如,该公司的客户是向公众销售定制厨房的厨房设计师。其生产主要特点是大批量(超过500,000种)多种颜色(超过500种漆色)的小系列。该公司的特色是小批量生产与最大限度的服务相结合:生产定制零件、适合客户的包装(按商店、按颜色、按专柜品牌等)、短而可靠的交货时间且反应性强。该布局对应于创建定制家具(展台、商店、酒店家具等)的活动,这些家具可以从设计到组装,甚至在其使用寿命结束时拆卸和回收。对于这项活动,公司的客户是设计办公室、建筑师、主要品牌(PSA、雷诺、香奈儿、EDF 等)。公司努力尊重客户的理念,采用工业方法进行高端饰面。
然而,液氮被指定为具有爆炸风险的危险材料,因此在运输和储存过程中需要确保安全,从而产生相关成本。SIFU 是一种特殊的低温储存系统,温度范围为 -150 至 -180°C。该系统由 Athersys 开发,采用外包方式制造。虽然该系统需要外部电源,但它简化了细胞疗法在运输和储存过程中的处理。此外,该公司还运营神户研究所,该研究所拥有多名拥有博士学位的研究人员,并拥有细胞培养设施。这使得它能够在内部进行所有必要的研发过程,从对细胞疗法的探索性研究到基因重组实验、动物实验、工艺开发研究和分析工作。2024 年 4 月,Healios 还从 Athersys 收购了一项 3D 细胞培养技术,该技术可以大批量生产质量稳定的细胞疗法。该技术已在研究所引入。如果细胞疗法开发进展顺利,公司计划投资扩大细胞培养设施产能,旨在通过内部制造来发展业务。
简介 直接键合是一种在室温下自发的电介质-电介质键合,通过低温批量退火工艺(200°C – 300°C)实现金属-金属连接(此处为 Cu-Cu 键合)。因此,直接键合工艺对于异质集成具有吸引力,并且与使用焊料的微凸块键合相比具有多种优势 [1, 2]。此外,对于这种无金属帽键合工艺,互连密度和互连缩放限制较少。该技术可以消除电气短路的风险,因为键合过程中不会有焊料从微凸块中挤出,这对于细间距应用至关重要。通过混合键合成功开发晶圆-晶圆键合,导致该技术迅速引入大批量制造 [3]。混合键合互连在 Cu/Cu 界面处表现出出色的可靠性和稳定的微观结构,这已在最近的研究中发表。[4, 5, 6]
制药行业生产的产品直接影响着地球上数十亿人中大多数人的生活。因此,一个看似很小的错误或故障可能会对成千上万人的健康产生不利影响。制药行业的监管机构认识到了这些风险,并实施了各种法规,以确保制药过程的完整性,从而确保数十亿人所依赖的药品的安全性和有效性。与制药行业没有直接关系的个人应该注意,因为这些法规的某些方面正在被过程工业所采用。因此,使用符合或可以轻松升级以满足制药要求的设备和做法是务实的。一些大批量药品通常使用连续加工技术制造;然而,药品制造通常是分批进行的。因此,这些过程通常包含许多压力和温度测量,例如本地指示器(仪表)、变送器和开关。这些测量中的许多都是在极端条件下进行的,例如在高压釜中。虽然可能有一些流量计,但批量过程通常包含称重仪器来实现材料添加。有些工艺涉及洁净室,其中低压差测量非常重要。工艺测量可以
IRDS 的工厂集成 (FI) 章节致力于确保微电子制造基础设施包含以可承受的成本和大批量生产产品所需的组件。要发挥摩尔定律的潜力,需要充分利用设备特征尺寸的减小、新材料、产量提高到接近 100%、晶圆尺寸增加和其他制造生产率的改进。这反过来又需要一个工厂系统,该系统可以完全集成额外的工厂组件,并共同利用这些组件来交付符合其他 IRDS 国际重点团队 (IFT) 确定的规格以及成本、数量和产量目标的产品。要保持数十年来每年每项功能成本降低 30% 的趋势,还需要抓住所有可能的成本降低机会。这些包括前端和后端生产、设施、收益管理和改进、增加系统集成(例如供应链上下游)以及改善环境健康和安全方面的机会。FI 挑战在实现这些机遇方面发挥着关键作用,许多 FI 技术挑战正在成为实现重大技术里程碑的限制因素。
三维打印(3DP),也称为加法制造,是一个伞术语,其中包括几种制造技术,其中通过连续层结合或沉积材料建造固体结构。[1]随着现代医疗保健采用从传统的“千篇一律”方法转变为以患者为中心的护理,必须单独建立药物输送的最佳剂量和释放特征,以实现有效且安全的治疗结果。[2]尽管药物基因组学为基于个人临床变量设计量身定制的药物剂量方案和治疗提供了一种驱动力,但药物制造商采用的当前大批量生产过程无法处理个性化的特殊性,因此各种治疗差距普遍存在。[3,4]个性化的给药需要很高的生产过程灵活性,并且常规大规模生产口服剂型的多个步骤类型(包括铣削,混合,颗粒,干燥,干燥,压力等)使得很难迎合个性化的剂量。[5]例如,不可能使用常规的平板电脑制造工艺生产Duocaplet,其中将不同的药物纳入了单个口头产品中的各种构型。[6,7]
我们的差异化技术、开发速度和开发过程中独特的严谨性也为我们在核心半导体市场做出突破性研究贡献并在新领域创造价值提供了机会。多年来,我们与半导体行业的领导者和研究联盟密切合作,推动 EUV 光刻技术从研发流程发展到目前的大批量生产。今天,我们见证了疫苗开发、鉴定和交付方面的重大创新,以抗击全球 COVID-19 大流行。Entegris 开发的清洁、坚固和可靠的解决方案有助于制造和安全分发这些疫苗。我们还见证了地球之外的科学和工程领域取得的令人振奋的成就。Entegris 为 GEMS(地球静止环境监测光谱仪)卫星的技术做出了贡献,该卫星正在部署以监测地球大气层。在离我们更近的地方,我们承诺通过引入能够减少碳足迹的新技术来保护我们的地球。 Entegris 的能力和创新解决方案可以满足对这些技术的需求,特别是在汽车行业向更加电气化和自动化的车队发展的过程中。