摘要:随着在自动驾驶领域的同时定位和映射技术的发展,当前的同时定位和映射方案不再是单个传感器,并且正在朝着多传感器融合的方向发展,以增强ro骨和准确性和准确性。在这项研究中,提出了一种基于相机,LIDAR和IMU的多传感器融合的定位和映射方案,称为LVI融合。不同的传感器具有不同的数据采集频率。为了解决异质传感器数据紧密耦合中时间不一致的问题,时间对齐模块用于对齐激光雷达,相机和IMU之间的时间戳。图像分割算法用于分割图像的动态目标并提取静态关键点。同时,进行了基于静态关键点的光流跟踪,并提出了强大的特征点深度恢复模型,以实现对特征点深度的强大估计。最后,LIDAR约束因子,IMU前综合约束因子和视觉约束因子共同构造使用基于滑动窗口的优化模块处理的误差方程。实验结果表明,所提出的算法具有竞争力和鲁棒性。
摘要:同时定位和映射(SLAM)对于移动机器人技术至关重要。大多数vi-sual SLAM系统都假定环境是静态的。但是,在现实生活中,有许多动态对象,会影响这些系统的准确性和鲁棒性。为了改善视觉大满贯系统的表现,这项研究提出了基于定向的快速和旋转简短(ORB)-Slam3框架的动态视觉大满贯(SEG-SLAM)系统,您只能看一次(YOLO)V5深学习方法。首先,基于ORB-SLAM3框架,Yolov5深学习方法用于构建用于目标检测和语义分割的融合模块。此模块可以有效地识别并提取明显和潜在动态对象的先验信息。第二,使用先前的信息,深度信息和表现几何方法为不同的动态对象开发了差异化的动态特征拒绝策略。因此,提高了SEG-SLAM系统的定位和映射准确性。最后,拒绝结果与深度信息融合在一起,并使用点云库构建了无动态对象的静态密集映射。使用公共TUM数据集和现实世界情景评估SEG-SLAM系统。所提出的方法比当前动态视觉大满贯算法更准确,更健壮。
摘要 - 多功能和自适应的语义理解将使自主系统能够理解并与周围环境相互作用。现有的固定级模型限制了室内移动和辅助自主系统的适应性。在这项工作中,我们介绍了Lexis,这是一种实时的内部本地化和映射(SLAM)系统,它利用了大型语言模型(LLMS)的开放式视频库本质(LLMS),以创建一种统一的方法,以实现现场和放置识别。该方法首先构建了环境的拓扑大满贯图(使用视觉惯性探子仪),并嵌入了图节点中的对比性语言图像预处理(剪辑)特征。我们将此表示形式用于灵活的房间分类和细分,作为以室内为中心的地方识别的基础。这允许循环封闭搜索针对语义相关的位置。使用公共,模拟数据和现实数据,涵盖办公室和家庭环境,对我们提出的系统进行评估。它成功地将房间分类为不同的布局和尺寸,并优于最先进的房间(SOTA)。对于位置识别和轨迹估计任务,我们实现了与SOTA的等效性能,所有这些都使用相同的预训练模型。最后,我们演示了系统的计划潜力。视频:https:// youtu。BE/GRQF3EUDFX8
1)Zhu,Zihan等。“ Nice-Slam:神经隐式可扩展编码的猛击。”IEEE/CVF计算机视觉和模式识别会议的会议记录。2022。尼斯 - 萨克1)
* liu,tianrui是电子邮件,电子邮件:tianrui.liu.ml@gmail.com摘要:同时本地化和映射(SLAM)在机器人技术中提出了强大的挑战,涉及地图的动态构造,同时确定了居住环境中机器人的精确位置。这项复杂的任务进一步加剧了固有的“鸡肉和蛋”的困境,其中准确的映射依赖于对机器人位置的可靠估计,反之亦然。SLAM的计算强度增加了一层复杂性,使其成为现场至关重要但苛刻的话题。在我们的研究中,我们通过采用粒子滤光片大量方法来应对SLAM的挑战。我们的方法利用了编码的数据和光纤陀螺仪(FOG)信息,以实现对车辆运动的精确估计,而激光雷达技术通过提供对周围障碍的详细见解来有助于环境感知。这些数据流的集成最终在建立粒子滤清器猛击框架中,代表本文中的键工作,以有效地导航和克服与机器人系统中同时定位和映射相关的复杂性。
同时本地化和映射(SLAM)是构建环境一致地图的过程,自动移动机器人行驶时,同时确定其在未知环境中未知位置中的地图上的位置。SLAM用于诸如自动驾驶汽车系统,灾后恢复以及生命检测,矿山或凹痕地图提取等技术。SLAM旨在改善当今的自动驾驶机器人技术,并在将来建立近乎完美的自主机器人技术。有了这个想法,研究人员对大满贯问题的兴趣及其研究越来越持续。以这种方式,SLAM使结果更接近现实。自主机器人最重要的标准之一是它感知其环境的能力。放置在机器人上的传感器将环境条件信息转换为适用于机器人处理的信号。适当的传感器选择非常重要,因为它影响了向机器人提供的环境条件信息的质量和数量。这项研究旨在确定SLAM中使用的传感器技术及其对SLAM问题解决方案的贡献。在这项研究中,使用单个传感器在特定环境中获取数据。索引项 - 自主,本地化,映射,机器人,传感器。
抽象的视觉同时定位和映射(VSLAM)为室内和室外导航发现了应用程序,这些应用程序通常会使其经常受到视觉复杂性的影响,尤其是镜像的反射。镜像存在的影响(时间可见及其在框架中的平均大小)的影响会影响定位和映射性能,而系统使用的直接技术预计会表现较差。因此,收集了记录在镜像环境中的图像序列的数据集Mirrenv,并用于评估现有代表性方法的性能。RGBD ORB-SLAM3和BUNDLEDEFUSION似乎随着镜像持续时间的增加显示了绝对轨迹误差的中等降解,而其余结果并未显示出显着降低的定位性能。事实证明,生成的网格图非常不准确,重建中的真实和虚拟反射碰撞。讨论了镜子环境中可能的错误和鲁棒性来源,概述了未来的方向,以验证和改善在平面镜的存在下VSLAM性能。Mirrenv数据集可从https://doi.org/10.17035/d.2023.0292477898获得。
设计/方法论/方法:本研究介绍了Slam-Ramu,这是一个终生的大满贯系统,通过提供精确,一致的重新定位和自主地图更新来解决这些挑战。在映射过程中,使用迭代误差状态kalman滤镜获得局部探测器,而后端环检测和全局姿势图优化用于准确的轨迹校正。此外,还合并了一个快速点云分割模块,以牢固地区分环境中的地板,墙壁和屋顶。然后使用分段点云来生成2.5D网格图,特别强调地板检测以滤波先前的映射并消除动态伪像。在定位过程中,设计了一种初始姿势比对方法,该方法将2D分支和结合搜索与3D迭代最接近点(ICP)注册相结合。此方法即使在具有相似特征的场景中也可以确保高精度。随后,使用先前地图上的分段点云执行扫描到地图注册。该系统还包括一个地图更新模块,该模块考虑了历史点云分割结果。它有选择地合并或排除新的点云数据,以确保地图中真实环境的一致反射。
ABC 谈话。当你介绍学生谈话词干时,从三个开始。A:我同意你的想法。B:我想在你所说的基础上继续发展。C:我需要挑战你的想法。然后,当你向 ABC 添加其他方式时,将它们添加到适当的类别中。如果学生说他们尊重地不同意同学的观点,那么新的句子词干可以与 C 对齐:我需要挑战你的想法。可以在这里找到免费下载的海报。亲和力映射。为了帮助学生组织想法或观点的列表,请使用此分类结构。每个想法都写在单独的便签上。重要的是不要在便签上贴多个。小组收集完所有想法后,他们应该将相似的便签分组在一起。不要向学生提供类别名称。他们将确定他们开发的组的最合适标签。这有助于学生从小想法中识别出更大的想法。询问-询问-交易。为每个学生提供一个问题或事实。学生找到一个伙伴。第一个伙伴要求第二个伙伴回答问题或提供有关事实的信息。接下来,第二个搭档也做同样的事。在两个搭档讨论完问题后,他们会交换问题并寻找新的搭档。这对于词汇、数学事实或世界语言课特别有用。背对背和面对面。学生们和搭档一起背对背站立,这样他们就看不到他们的搭档。向全班同学提出一个问题,并提供足够的思考时间。在思考期间,学生背对着他们的搭档。当发出信号(方向或声音)时,学生转身面对他们的搭档并讨论提示。在给定的时间(45-90 秒通常是一个好的开始)后,学生们背对背地保持沉默。然后提供下一个提示。您可以通过在每个问题之间切换搭档来修改此协议。
摘要 - 越来越多地提出了用于减少运行同时本地化和映射(SLAM)算法的移动设备的资源消耗的解决方案,其中大多数边缘辅助的SLAM系统假设移动设备之间的通信资源和边缘服务器之间的通信资源是无限制的,或者依靠HEURISTIC,或者依靠Heursistical来选择Edge的信息来传输Edge de Edge to the Edge the Edge the Edge the Edge。本文介绍了Adaptslam,这是一种边缘辅助的视觉(V)和Visual惯性(VI)SLAM系统,该系统适应了可用的通信和计算措施,基于我们开发的理论基础,我们开发了用于在移动设备中构建最佳本地和全球映射的关键框架(代表性框架)的子集(代表性框架)的子集(代表性框架)。我们实施了Adaptslam,以与最先进的开源VI-SLAM ORB-SLAM3框架合作,并证明,在受限的网络带宽下,将跟踪误差降低了62%,与最佳的基线方法相比。索引项 - 中等定位和映射,边缘计算,不确定性定量和最小化