致谢 ii 序言 iii 表格列表 v 图表列表 vi 缩写列表 vii 摘要 viii 1. 介绍 1 2. 锂离子电池退化 4 2.1. 特性 4 2.2. 模式和机制 5 2.2.1. 阳极退化 6 2.2.2. 阴极退化 8 2.2.3. 非活性材料退化 10 2.2.4. 高阶退化 11 3. 关键退化变量 13 3.1. 温度 13 3.2 充电状态 14 3.3 充电速率 16 4. 电池制造商建议 19 4.1. 手机 19 4.2.笔记本电脑 20 4.3. 电动工具 22 4.4. 电动汽车 23 4.5. 比较制造商说明和学术文献 25 5. 电池寿命改进 28 5.1. 电池寿命改进的好处 28 5.2. 电池管理系统和健康状态监测的作用 29 5.3. 用户行为 30 5.3.1. 温度建议 31 5.3.2. 充电状态建议 31 5.3.3. 当前建议 33 5.3.4. 其他建议 33 6. 结论 34 参考文献 36
钢筋混凝土结构是沿海基础设施的重要组成部分,为周边自然环境和城市人口的安全和繁荣奠定了基础。然而,这些结构越来越受到氯离子腐蚀的威胁,氯离子腐蚀是导致其恶化的主要因素,尤其是在海洋环境中 1,2 。氯离子渗透混凝土,导致钢筋腐蚀,破坏结构完整性,缩短这些基础设施的使用寿命。氯化物侵入受到周围环境条件(包括气候变化)的广泛影响 3 。此外,极端事件和海平面上升导致此类结构的荷载制度加剧,从而增加了需求 4 。最后,新建筑或大规模重建活动的实施损害了气候缓解和环境保护目标 5 。
预计,通过实施国家补贴和补助机制来促进供应链增长和批量生产,也可以实现降低成本的目标。例如,在美国,美国能源部利用高达 70 亿美元的公共资金创建了区域清洁氢中心计划 (H2Hubs) 6 。该计划将用于在全美建立七个区域清洁氢中心,为国家清洁氢网络奠定基础,这将为经济多个部门的脱碳做出重大贡献。这些中心旨在建立制造业和基础设施,以促进规模经济。
摘要。DNA 折纸是 DNA 纳米技术的支柱,人们已经投入了大量精力来了解自组装反应的各种因素如何影响目标折纸结构的最终产量。本研究分析了碱基序列如何通过在自组装过程中产生脱靶副反应来影响折纸产量。脱靶结合是一种未被充分探索的现象,可能会在折纸折叠途径中引入不必要的组装障碍和动力学陷阱。我们开发了一种多目标计算方法,该方法采用给定的折纸设计,并对不同的支架序列(及其互补的钉书钉)进行评分,以确定四种不同类型的脱靶结合事件的发生率。使用我们在 DNA 折纸上的方法,我们可以选择生物序列(如 lambda DNA 噬菌体)的“坏”区域,当用作折纸支架序列时,每种形状的脱靶副反应数量过多。我们利用高分辨率原子力显微镜 (AFM) 显示,尽管支架序列具有完全互补的订书钉组,但这些支架序列在体外大多无法折叠成目标三角形或矩形结构。相反,使用我们的方法,我们还可以选择生物序列的“良好”区域。这些序列缺乏脱靶反应,当用作折纸支架时,可以更成功地折叠成其目标结构,如 AFM 所表征。这些结果已在两个不同实验室的“盲”折叠实验中得到验证,其中实验者不知道哪些支架是好的或坏的折叠者。为了进一步研究组装行为,光镊实验揭示了不同的机械响应曲线,与支架特定的脱靶相互作用相关。虽然 GC 含量较高的变体显示出较高的平均展开力,但脱靶结合较低的变体表现出更均匀的力-延伸曲线。我们的分析证实,高脱靶结合会导致结构异质性增加,如 OT 实验展开轨迹的聚类行为所示。总体而言,我们的工作表明,如果脱靶反应足够普遍,碱基序列中隐含的脱靶反应会破坏折纸自组装过程,并且我们提供了一种软件工具来选择支架序列,以最大限度地减少任何 DNA 折纸设计的脱靶反应。
摘要。SHA-3 被认为是最安全的标准哈希函数之一。它依赖于 Keccak-f[1 600] 置换,该置换对 1 600 位的内部状态进行操作,主要表示为 5 × 5 × 64 位矩阵。虽然现有实现通常以 32 位或 64 位的块顺序处理状态,但 Keccak-f[1 600] 置换可以通过并行化加速。本文首次通过 32 位和 64 位架构上的自定义向量扩展探索基于 RISC-V 的处理器中 Keccak-f[1 600] 并行化的全部潜力。我们分析了由五个不同步骤映射组成的 Keccak-f[1 600] 置换,并提出了十条自定义向量指令来加速计算。我们在 SystemVerilog 中描述的 SIMD 处理器中实现了这些扩展。我们将我们的设计性能与基于矢量化专用指令集处理器 (ASIP) 的现有架构进行了比较。我们表明,得益于我们精心选择的自定义矢量指令,我们的设计性能优于所有相关工作。
是一个过程,用于确定必须采取哪些措施来确保任何实物资产能够在其当前运营的背景下继续履行其预期功能。 RCM是第三代维护行动,可以克服第二代维护行动的弱点,例如通过分析RCM系统,可以减少需要计划检修的部件数量。这意味着人力和物力方面的大幅减少,以及库存的减少
目前,CRISPR/Cas9 系统已广泛应用于各类生物和细胞的基因组编辑。1,2 遗憾的是,它还会在与靶序列相似的非靶位点引起不必要的突变。3 非靶突变是由 CRISPR/Cas9 RNPs 对 DNA 序列的非特异性识别引起的。4 已证明,除了最佳 PAM 序列 5-NGG-3 之外,Cas9 还可以切割具有 5-NAG-3 或 5-NGA-3′PAM 的位点,尽管效率较低。5 此外,20 nt 的单向导 RNA(sgRNA)可以识别与 sgRNA 存在多达 3 - 5 个碱基对错配的 DNA 序列,这表明在人类基因组中特定核酸酶的可能结合位点多达数千个。 3 此外,CRISPR/Cas9 可以诱导与 RNA 引导链相比含有一些额外碱基(“ DNA 凸起”)或一些缺失碱基(“ RNA 凸起”)的 DNA 序列进行非靶向切割。6 非靶向 DNA 切割可导致
摘要 — 典型的 4 型风力涡轮机使用直流链路逆变器将电机连接到电网,从而为 N 涡轮机农场的每个涡轮机提供 2 个功率转换器步骤,并将产生 2 N 个功率转换器。这项工作提出了一种用于 4 型风电场的直流总线收集系统,该系统减少了所需的转换器总数,并最大限度地降低了储能系统 (ESS) 要求。这种方法要求每个涡轮机有一个转换步骤,ESS 需要一个转换器和一个电网耦合转换器,这导致风电场的转换器数量为 N +2,并可能节省大量成本。然而,直流收集系统的权衡之一是需要增加能量存储以过滤功率变化并提高电网的电能质量。本文介绍了一种有效的直流总线收集系统设计的新方法。风电场的直流收集在涡轮机之间实施功率相位控制方法,该方法可以过滤变化并提高电能质量,同时最大限度地减少对增加储能系统硬件的需求并提高电能质量。相位控制利用了新颖的功率包网络概念和非线性功率流控制设计技术,可确保稳定和增强的动态性能。本文介绍了直流收集和相位控制的理论设计。为了证明这种方法的有效性,提供了详细的数值模拟示例。
该项目将寻求解决阻碍 BTM DER 用于提供电网服务的一系列障碍。其中,该项目将寻求通过制定控制策略来解决技术障碍,通过控制架构的电力系统模拟来解决性能可靠性问题,并通过技术经济模拟来解决经济障碍。拟议的项目活动将包括行业参与(例如会议、工作组等)、行业分析/研究、控制架构开发(例如设计协调包括 DER 的配电/输电系统组件的架构)、计算机模拟(例如用例场景、输电/配电模拟)、技术经济分析、硬件在环 (HIL) 测试以及聚合器和本地控制器架构的现场测试。
FM8502 是一款工作在电感电流临界模式的高精度降压型 LED 恒流驱动芯片,芯片内部集成 500V 功率开关且 具有 OVP 电压调节功能,可通过调节外置 OVP 电阻阻值来设置 Vovp 电压值,另外,芯片 ROVP 引脚带 Enable 功能,可兼容开关调色应用。 FM8502 内置了高精度的采样、补偿电路和高压 JFET 供电技术,无需启动电阻和 VCC 电容,使得系统外围十分简单,在实现高精度恒流控制的前提下,最大限度的节约了系统成本和体积,可 广泛应用于 LED 球泡灯、 LED 蜡烛灯、 LED 日光灯管及其它非隔离降压型 LED 照明驱动领域。