犹他阵列为 BrainGate 等尖端神经功能恢复项目提供动力,但底层电极技术本身在过去三十年中几乎没有取得任何进展。在这里,利用先进的双面光刻微加工工艺来展示 1024 通道穿透硅微针阵列 (SiMNA),其记录能力和皮质覆盖范围可扩展,适合临床转化。SiMNA 是第一个具有柔性背衬的穿透微针阵列,可适应大脑运动。此外,SiMNA 具有光学透明性,允许同时进行光学和电生理学神经元活动检查。SiMNA 用于展示对长期植入小鼠的自发和诱发场电位以及单个单位活动的可靠记录,这些记录在长达 196 天内响应光遗传学和胡须气流刺激。值得注意的是,1024 通道 SiMNA 建立了大鼠宽带大脑活动的详细时空映射。这种新型可扩展且生物相容的 SiMNA 具有多模态能力和对宽带大脑活动的敏感性,将加速基础神经生理学研究的进展,并为用于脑机接口的穿透和大面积覆盖微电极阵列树立新的里程碑。
摘要 随着纳米技术领域的进步,纳米图案化不仅在高附加值产品中得到广泛应用,而且在廉价产品中也得到广泛应用。此外,大规模生产廉价产品所需的技术,如连续卷对卷 (R2R) 工艺,正在迅速兴起。人们对亚微米和纳米模具的制造进行了广泛的研究。在这项研究中,我们提出了一种激光干涉曝光来制造可用于连续卷对卷图案化的纳米图案圆柱形模具。此外,我们还展示了使用棱镜在圆柱体(长度为 300 毫米,直径为 100 毫米)上制造无缝图案的螺旋曝光工艺。使用 UV 树脂将图案转移到平面模具上,并使用场发射扫描电子显微镜进行测量;测量结果显示图案均匀,具有纳米图案线宽(75 纳米)和亚微米周期(286 纳米)。观察结果表明,使用激光干涉光刻制造卷模的方法是一种快速可靠的无缝图案化方法。
LACera™ 代表着 CMOS 技术新时代的开始,由 Teledyne Imaging 独家开发和拥有。LACera 以 Teledyne 的 CCD 和 CMOS 传感器以及相机技术和设计为基础,在 CMOS 高级成像功能方面迈出了重要的一步,为下一代发现提供了可能。CMOS 传感器的挑战在于在扩展到更大尺寸时保持性能;特别是提供速度和低噪音架构的组合。LACera 凭借全局快门、18 位读出和辉光抑制技术,在数百万像素的规模上提供深度冷却、低噪音性能。LACera 代表了高级成像解决方案的关键要素,只有凭借 Teledyne 的性质和规模才有可能实现。从像素、传感器和 ROIC 设计,到低噪音电子器件,再到深度冷却和系统接口,Teledyne 是唯一一家能够在大尺寸 CMOS 中提供这种百分之百有机解决方案的公司。请留意 LACera 独家功能上显示的 LACera 徽标。
摘要:膜是化学净化、生物分离和海水淡化的关键部件。传统的聚合物膜普遍存在渗透性和选择性之间的权衡,这严重阻碍了分离性能。纳米多孔原子薄膜(NATM),如石墨烯 NATM,有可能打破这种权衡。由于其独特的二维结构和潜在的纳米孔结构可控性,NATM 有望通过分子筛获得出色的选择性,同时实现极限渗透性。然而,石墨烯膜的概念验证演示和可扩展的分离应用之间存在巨大的选择性差异。在本文中,我们提供了一种可能的解决方案来缩小这种差异,即通过两次连续的等离子体处理分别调整孔密度和孔径。我们证明,通过缩小孔径分布,可以大大提高石墨烯膜的选择性。首先应用低能氩等离子体来使石墨烯中高密度缺陷成核。然后利用受控氧等离子体选择性地将缺陷扩大为具有所需尺寸的纳米孔。该方法具有可扩展性,制备的具有亚纳米孔的 1 cm 2 石墨烯 NATM 可以分离 KCl 和 Allura Red,选择性为 104,磁导率为 1.1 × 10 −6 ms −1 。NATM 中的孔可以进一步从气体选择性亚纳米孔调整到几纳米尺寸。制备的 NATM 在 CO 2 和 N 2 之间的选择性为 35。随着扩大时间的延长,溶菌酶和牛血清白蛋白之间的选择性也可以达到 21.2,渗透性比商用透析膜高出大约四倍。这项研究提供了一种解决方案,可以实现孔径可调的 NATM,其孔径分布较窄,适用于从气体分离或脱盐中的亚纳米到透析中的几纳米的不同分离过程。关键词:纳米多孔石墨烯膜、纳米多孔原子级薄膜 (NATM)、蛋白质选择性膜、等离子蚀刻、纳米孔工程
$ evwudfw 2 *urzwk lq wkh xvdjh ri khwhurjhqrxv lqwhlq和fklsohwv edvlq lq lq lqdqfhg lqdqfhg iru iru iru iru iru。 ohdglqj和olnh $,dqg +3&lv和iru jigh 1月份fkls vl] hv wkdw h [fhg] h [srvuh ilhog 6lpxowdqhrxhrxhrxvo \ wkhvh及其和这个and this ululqr plpdooohu olqhzlgwkwk frqhfwlqv lq lq wkhlu uhglvwlrq od \ huv wr phw wwhw wwis,2 ghqvlw \ and edqglgwk和anyshophudqfhqwv,q wklv sdshu ghprqvwudwh和iru这是olqhv olqhv和iLhog vilwfk erxqgdu \ whvwv what what and lpsdfw ri lpsdfw ri。 whf vwfulfdo uhvlvwdqfh ru ohdndjhqw fxuhqw:vkrz wkdw word and lv yldeow wruw wruw ilqs ilqs ilood isisis isisis isisisisisisisisisionary isisisisisionary iruju odujh odujh odujh DUHD SDFNDJHV
菱形堆叠的几层石墨烯(FLG)显示出奇特的电子特性,这些特性可能导致现象,例如高温超导性和磁性排序。迄今为止,经验研究主要受到厚度超过3层和设备兼容大小的菱形flg的困难限制。在这项工作中,我们证明了菱形石墨烯的合成和转移,厚度高达9层,面积高达〜50 m m 2。通过拉曼光谱法鉴定了菱形FLG的结构域,并在类似条纹的构造中发现与同一晶体内的伯纳尔区域交替。接近局限的纳米成像进一步确定了相应堆叠顺序的结构完整性。组合的光谱和微观分析表明,菱形堆积的形成与基础铜施加块密切相关,并导致沿着优先晶体学方向沿着层间位移而出现。菱形对厚度和大小的生长和转移应促进预测的非常规物理学的观察,并最终增加其技术相关性。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
Chaoyu Song 1,2 ,, Fanjie Wang 1,2 ,, Yuangang Xie 1,2 ,, Yuchen Lei 1,2 ,, Zhengzong Sun 3* ,
图形摘要:(A) 显示两名患有胶质瘤病变的患者的 T1 图像。VBG 是一种病变替换/填充工作流程,其中一种方法用于单侧病变 (uVBG),另一种方法用于双侧病变 (bVBG)。(B) 显示所选的 recon-all 方法,(C) 和 (D) 显示输出、组织分割 (C) 和整个大脑分区 (D)。如果不使用 VBG(非 VBG),recon-all 可能会在分区中出现一些错误(左)或无法完全生成分区(右)。但是,使用任何一种 VBG 方法都可以让 recon-all 完成之前失败的部分,并提高分区质量。
然而,令人印象深刻的高 PCE 是使用氮气中不可升级的旋涂法从小面积电池(< 1 cm 2 )获得的。[1–3] 为了使 PSC 具有商业可行性,开发在环境空气中低成本大面积制造工艺势在必行。工业上可用于大面积涂覆的许多工艺,例如浸涂、刮刀涂覆和狭缝模涂覆等。其中,狭缝模涂覆是优选的,因为它可以精确控制涂层厚度和溶液使用量(即材料浪费最少)。[4–7] 狭缝模涂覆也适合用于连续工艺,这可以进一步降低制造成本。高性能 PSC 已经通过刮刀涂覆、狭缝模涂覆和喷涂等可扩展工艺制造出来。[8–14] 然而,大多数研究集中在受控环境下的钙钛矿层处理。关于在环境空气中操作的可扩展工艺的报道有限。 [15–18] 常用的 pin 型 PSC 结构包含通过溶液工艺沉积的四层,这四层包括空穴传输层 (HTL)、光吸收钙钛矿层、电子传输层 (ETL) 和功函数调节层 (WFL)。首先,为实现可扩展的工艺,每层加工过程中使用的所有溶剂都应无毒。[19–21] 然后,在每层的合适化学组成、溶剂类型、薄膜形貌控制、层间兼容性、每层的稳定性之间的平衡以拥有可行的环境空气处理系统在科学和工程方面都是相当具有挑战性的。PSC 每层的薄膜形貌和兼容性由每层的化学组成和工艺条件控制。对于钙钛矿层,薄膜形貌由溶剂蒸发和结晶的动力学速率决定。[22–23] 对于旋涂,大多数溶剂通过涂布机旋转和反溶剂滴落迅速去除。 [24] 但狭缝涂布的溶剂挥发速度低于旋涂。[17,25–26] 采用反溶剂浴、气体淬火和预热基片法等策略来增加溶剂挥发速度。[11,27–31] 虽然可以实现高PCE器件,但结果仅限于小面积基片。如果
PANTHR™ 大面积显示器 (LAD) 是一种独立的、容错的多功能显示器。它是一种最具价值的解决方案,可在卓越性能、生命周期可承受性、低风险和长期可支持性之间实现最佳平衡。 PANTHR 显示器可在单个单片 2560 X 1024 有源矩阵 LCD 上显示来自最多四个外部源的清晰、清晰的高保真图形和视频。PANTHR 独特的“全屏”容错功能可提供无与伦比的可靠性,并可无限使用整个显示器。