许多研究都集中于生理性疼痛检测方法,这些方法的可靠性和技术成熟度各不相同。1–3 一些方法,例如磁共振成像或心率变异性,在生理性疼痛检测方面显示出巨大的前景,但测量方式可能被视为侵入性,并会严重限制患者的活动自由。因此,需要一个系统通过生理、非侵入性和移动方法来检测疼痛并向护理人员显示结果。要开发的移动应用程序是系统的一部分,该系统由带有织物传感器的智能袜子组成,用于测量皮肤电导率,Shimmer TM 单元通过蓝牙®将这些信号传输到智能手机或平板电脑,以及 ML 模块来确定疼痛程度(图1)。4–6 该系统是非侵入式的:袜子中的织物传感器不会像粘贴式传感器那样刺激皮肤,并且每天穿着袜子时,无需引入额外的材料,例如手腕或头带。此外,Shimmer 装置可以戴在脚踝上、裤子上或裤子下,但也可以放在轮椅的横档上,或者在客户躺下时放在袜子旁边。系统的其余部分是移动和无线的,无声的,并且对生理变化做出快速反应。该应用程序是根据开发电子健康应用程序的建议开发的,强调了在多学科团队中工作和让目标用户参与的重要性
智力全球消费者银行首席执行官Rajesh Saxena先生表示,他对这个项目感到兴奋,他说:“我们很荣幸在毛里求斯银行工作。我们的量子中央银行平台是创新,技术优化和变革性客户体验的结合,可帮助客户应对技术和新兴的全球动态挑战,并与数字化转型保持同步。”智力量子公司专门为中央银行,货币当局和债务办公室设计的全面解决方案提供了可扩展的,防止未来的现代技术框架和API第一策略。围绕DIY原则构建,该原则允许中央银行随时随地创建自己的产品,在任何地方,智力量子也具有API-Fir-First Micro-Services架构,该体系结构将确保与内部和外部系统轻松集成,从而提高效率更高。智力的量子中央银行平台旨在提供真正的数字和上下文解决方案,使中央银行,金融机构和政府实体能够无缝合作,以通过全面支持金融包容性和财政部单一帐户来提高国家一级的效率。
摘要:本文以酷儿为理论基础,探索设计与人工智能 (AI) 交互并以不同方式想象人工智能的可能性,为设计和人工智能的学术讨论做出了贡献。本文通过报告一项自理论实验来实现这一目标,在该实验中,我提出了以下问题:如果我们将人工智能理解为酷儿,一种处于形成状态的突变体;一种动态的、关系的、非二元的性别变体,会怎样?那么人工智能会如何以不同的方式出现在这个世界上并对我们人类采取行动?该实验使用生成对抗网络 (GAN) 来颠覆当今对人工智能的理解,并让新的人工智能命题生根发芽。这项工作让我们得以一窥设计拒绝的形式,这可能会让设计师在使用人工智能系统进行设计时认识到文化可计算性和自决性。
窃听是不可克隆定理的结果,假设发送的四个状态 | ↑ + z ⟩ , | ↓ − z ⟩ , | ↑ + x ⟩ , | ↓ − x ⟩ 并不都是相互正交的,并且它们的生成是随机的,因此不存在
摘要:CRISPR-Cas 基因编辑技术提供了精确修改作物的潜力;然而,由于组织培养过程冗长且基因型特异性,体外植物转化和再生技术存在瓶颈。理想情况下,植物体内转化可以绕过组织培养,直接产生转化植物,但有效的植物体内传递和转化仍然是一个挑战。本研究探讨了有可能直接改变生殖系细胞的转化方法,从而消除了体外植物再生的挑战。最近的研究表明,装载质粒 DNA 的碳纳米管 (CNT) 可以扩散穿过植物细胞壁,促进外来遗传元件在植物组织中的瞬时表达。为了测试这种方法是否是植物体内转化的可行技术,利用带有报告基因的叶片和离体胚浸润,将 CNT 介导的质粒 DNA 传递到水稻组织中。定量和定性数据表明,CNT 有助于质粒 DNA 在水稻叶片和胚胎组织中的传递,从而导致 GFP、YFP 和 GUS 的瞬时表达。还利用靶向八氢番茄红素去饱和酶 (PDS) 基因的 CRISPR-Cas 载体开展实验,将 CNT 传递到成熟胚胎中,以创建可遗传的基因编辑。总体而言,结果表明,基于 CNT 的质粒 DNA 传递似乎有望用于植物体内转化,进一步优化可以实现高通量基因编辑,从而加速功能基因组学和作物改良活动。
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子模拟,该系数描述了经典混沌系统被扰乱的时间尺度。OTOC 仅应用于非常有限的玩具模型,例如与黑洞信息扰乱相关的 SYK 模型,但它们在量子系统中的信息扰乱方面具有更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的轻松能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和晚期“饱和” OTOC(当探索到全状态密度时)之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,正则化的 OTOC 仍能满足 Maldacena 边界,但不正则化的 OTOC 则不能,这强调了前者更适合于讨论这种中等尺寸量子系统中的信息扰乱。
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子类似物,该系数描述了经典混沌系统扰乱的时间尺度。OTOC 仅应用于非常有限数量的玩具模型,例如与黑洞信息扰乱相关的 Sachdev-Ye-Kitaev 模型,但它们可以发现在量子系统中的信息扰乱的更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的容易的能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和探索全态密度时 OTOC 的后期“饱和”之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,Maldacena 边界仍然由正则化的 OTOC 满足,但不由非正则化的 OTOC 满足,这强调了前者对于讨论这种中等尺寸量子系统中的信息扰乱更有用。
抽象背景。与其他疗法相比,许多最近的随机对照试验报告了大脑 - 计算机界面(BCI)对上肢中风康复的效率。尽管报道了令人鼓舞的结果,但报告的结果有显着的变量。本文旨在研究不同BCI设计对中风后上行康复的有效性。方法。通过以95%的信心间隔计算对冲的s g值来评估合并和单个研究的效果大小。亚组分析,以检查不同BCI设计对治疗效果的影响。结果。该研究包括12项涉及298例患者的临床试验。分析表明,与对照疗法相比,BCI在改善上LIMB运动功能方面产生了显着的短期和长期效率(分别为HEDGE的G = 0.73和0.33)。基于我们的亚组分析,使用运动意图的BCI研究与使用的运动成像相比具有更高的效应大小(分别为HEDGE的G = 1.21和0.55)。使用带功率特征的BCI研究的效果大小比使用过滤器库的公共空间模式特征(分别是对冲的G = 1.25和-0.23)的效应大小明显更高。最后,与其他设备相比,使用功能性电刺激作为BCI馈电的研究具有最高的效果大小(Hedge's G = 1.2)。结论。这项荟萃分析证实了BCI对上限康复的有效性。我们的发现支持带功率特征,运动意图以及未来BCI的功能电刺激,用于中风后上行康复。
时序非相关器 (OTOC) 可用于探测当动态初始条件发生变化时量子系统对信息的扰乱速度。在足够大的量子系统中,可以从 OTOC 中提取 Lyapunov 系数的量子模拟,该系数描述了经典混沌系统被扰乱的时间尺度。OTOC 仅应用于非常有限的玩具模型,例如与黑洞信息扰乱相关的 SYK 模型,但它们在量子系统中的信息扰乱方面具有更广泛的适用性,可以与实验进行比较。众所周知,多原子分子的振动会从低能量下的规则动力学转变为足够高能量下的轻松能量流。因此,分子代表了研究中等大小(此处为 6 到 36 个自由度)多体系统中扰乱的理想量子系统。通过计算量子 OTOC 及其经典对应物,我们可以量化信息在分子系统中如何以量子力学方式“扰乱”。在早期“弹道”动力学和晚期“饱和” OTOC(当探索到全状态密度时)之间,确实存在一个可以为本研究中的所有分子定义量子 Lyapunov 系数的机制。与实验速率数据的比较表明,由 OTOC 测量的慢速扰乱可以达到分子反应动力学的时间尺度。即使对于我们讨论的最小分子,正则化的 OTOC 仍能满足 Maldacena 边界,但不正则化的 OTOC 则不能,这强调了前者更适合于讨论这种中等尺寸量子系统中的信息扰乱。