如今,对新药的探索导致了成千上万种新物质的开发。有效的药物设计策略之一是修改先前获得和研究过的物质。一种非常流行的修改是将卤素引入药物结构,最常见的是氟或氯原子。然而,将溴引入潜在药物的结构也有许多优点。一个很好的例子是从海洋生物中提取的天然物质,这些物质已被研究并证明对各种疾病有效,包括耐药细菌的抗生素治疗。许多研究证明了溴及其同位素在治疗中的使用是合理的(包括诊断成像和放射治疗)。为了更好地解释“溴化”的影响,许多研究人员将这种现象描述为“卤素键”。由于有机分子卤素原子中存在所谓的“σ-空穴”,因此可以形成这些键,从而导致分子间和分子内相互作用的变化。此类变化可以对药物-靶标相互作用产生有利影响。溴化的优点包括提高治疗活性、对药物代谢产生有益影响以及延长药物作用时间。此外,重原子效应现象可用于提高光动力疗法和放射增敏的有效性。不幸的是,“溴化”并非没有缺点,我们可能包括增加毒性作用和在生物体内的积累。
Hana Nedozrálová 1 , Pavel Křepelka 1 , Muhammad Khalid Muhammadi 2 , Žilka Norbert Žilka 2 , Jozef Hritz 1 1 Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 2 Institute of Neuroimmunology, Slovak Academy of Science, Bratislava, Slovakia Background包括。旨在使病理tau蛋白聚集体的积累是许多神经退行性疾病的标志,包括阿尔茨海默氏病。神经元中错误折叠的tau的积累是有毒的,它破坏了细胞生理学,导致神经元死亡和tau在整个大脑中的传播。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。 尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。 我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。 可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。 我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。 Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。TAU病理的影响包括轴突运输,线粒体和溶酶体功能障碍以及突触变性。尽管在理解tau病理学方面取得了进步,但最初的tau错误折叠,原纤维形成,跨连接的神经元的病理传播以及随后在单个神经元水平上的细胞毒性仍然不清楚。我们的目的是直接在鼠类鼠模型的玻璃化脑组织中可视化分子结构的病理变化。可视化天然超微结构的方法我们使用玻璃化的新鲜大脑而无需染色或固定。我们将以低温为中心的离子束铣削(FIB)和生物对比度扫描电子显微镜(SEM)与羊角层上的冷冻电子层析成像(Cryo-ET)结合在一起。Helios Hydra V显微镜的冷冻等离子体-FIB/SEM设置允许对非染色的玻璃体水合生物样品进行成像,在纳米分辨率中具有高生物学对比度的非染色玻璃化水合生物样品,允许体积成像覆盖比冷冻-ET中使用的典型lamella更宽的面积。导致此海报,我们介绍了原位可视化工作流程,并展示了初步的生物对比冷冻式纤维/SEM/SEM图像以及受tauopathy影响的鼠大脑组织的层状。结论我们表明,新型的生物对比度冷冻质量fib/sem成像工作流程可用于无需化学固定的病理组织的超微结构表征,并且与lamella callout和situ Cryo-et的结合为揭示神经变性细胞的细节提供了出色的工具。承认这项工作已获得捷克科学基金会(22-15175i)的资金。我们承认Cero-Electron显微镜和层析成像核心设施CIISB的CEITEC MU,指导CZ Center,由Meys CR(LM2023042)和欧洲区域发展基金会“ UP CIISB”(No.cz.02.1.01/0.0/0.0/18_046/0015974)。
在国王学院(King's College),威尔金斯(Wilkins)在瑞士科学家鲁道夫·辛格(Rudolf Singer)从小腿胸腺获得的Ram Sperm和DNA上从事X射线衍射工作。Singer实验室的DNA比以前隔离的DNA完整得多。Wilkins发现,可以从该浓缩的DNA溶液中产生薄螺纹,该溶液中包含高度有序的DNA阵列,适合于生产X射线衍射图案。使用小心捆绑的这些DNA螺纹并将其保持水分,Wilkins和研究生Raymond Gosling获得了DNA的X射线照片,这表明Singre样品中的长而薄的DNA分子在这些线中具有常规的晶体样结构。莫里斯·威尔金斯(Maurice Wilkins)与詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)分享了1962年的生理学或医学贵族奖。
摘要: - 这项研究的重点是利用电动摩托车的格子结构的创新底盘框架的设计和开发。该研究旨在优化框架的性能,重量和结构完整性,同时满足电动动力总成的独特要求。通过高级计算机辅助设计(CAD)和有限元分析(FEA),与传统的框架设计相比,格子结构旨在提供出色的扭转刚度和改善的处理特性。该研究探索了各种材料,包括低碳钢合金和轻质复合材料,以在强度和减轻体重之间达到最佳平衡。重点是考虑重心,重量分布和热管理等因素,将电池组和电动机有效地集成到框架内。该研究还调查了格子结构的制造性和成本效益,采用焊接和增材制造等技术来提高生产效率。需要进行大量的模拟和现实测试,以在各种负载条件下验证框架的性能,包括加速,制动和转弯。结果表明,整体底盘刚度,体重减轻和增强的骑手人体工程学的显着改善。这种创新的电动摩托车框架设计方法有助于可持续运输解决方案的发展,从而通过提供改进的性能,范围和骑手体验来彻底改变电动两轮车行业。
是由最近提出的镍3 ni 2 o 7交替交替的单层三层堆叠结构的动机,我们使用从头开始和随机相近似技术全面研究了该系统。我们的分析揭示了这种新颖的LA 3 Ni 2 O 7结构与其他Ruddlesden-Popper镍超导体(例如类似的电荷转移差距值和E G轨道的轨道选择性行为)之间的相似性。压力主要增加了ni g波段的带宽,这表明这些E G状态的巡回特性提高了。通过将细胞体积比0从0.9更改为1.10,我们发现La 3 Ni 2 O 7中的双层结构总是比单层三层堆叠LA 3 Ni 2 O 7具有低的能量。此外,我们观察到从三层到单层sublattices的“自我兴奋剂”效应(与整个结构的每个位置的平均每个位置的1.5电子相比,相比之下),通过总体电子掺杂,这种效果将增强。此外,我们发现了一个限制在单层的d x 2 -y 2波配对状态。由于单层之间的有效耦合非常弱,因此由于中间的非耐受性三层,这表明该结构中的超导过渡温度t c应远低于双层结构中。
三角形PTBI 2是一个没有反转对称性的分层半学,在费米能的附近具有12个Weyl点。最近显示其拓扑费米弧在不存在大量超导性的低温下显示出超导。在这里,我们执行第一个原理计算,以详细研究PTBI 2的整体和表面电子结构,并获得自旋纹理以及弧的动量依赖性定位。是由在压力下或掺杂下实验观察到的反转对称性的恢复的动机,我们在两个结构之间插入,并确定Weyl节点的能量和动量依赖性。为了深入了解PTBI 2的表面超导性,我们构建了对称性适应的有效四波段模型,该模型可以准确地重现PTBI 2的Weyl点。我们通过对费米弧线之间的对称允许配对进行分析,该模型自然混合了旋转单链和旋转三键通道。此外,仅表面超导的存在促进了固有的超导体 - 隔离 - 占主导地位约瑟夫森连接,而半金属相夹在两个超导体表面之间。对于π的相位差,零能量的Andreev结合状态在两个终止之间形成。
自身免疫性甲状腺疾病(AITD),例如Graves疾病(GD)或Hashi-Moto的甲状腺炎(HT)是器官特异性疾病,涉及甲状腺组织的不同成分之间的复杂相互作用。在这里,我们使用空间转录组学探索存在于甲状腺组织中的不同细胞的分子结构,异质性和位置,包括甲状腺卵泡细胞(TFC),基质细胞,如纤维卷素细胞,例如卷布细胞,内皮细胞,内皮细胞和甲状腺纤维细胞。我们在AITD患者的甲状腺样品中鉴定出具有上调的CD74和MIF表达的受损的抗原呈递TFC。此外,我们辨别结缔组织中的两个主要纤维细胞亚群,包括ADIRF +肌细胞细胞,主要富含GD,以及富含HT患者的弹药纤维细胞。我们还证明了AITD中的Fenstryplatsplvap +容器的增加,尤其是在GD中。我们的数据揭示了可能在AITD发病机理中起作用的基质和甲状腺上皮细胞亚群。
聚合物通过原子上薄的前体膜进行高表面能的湿纳米孔,然后毛细血管填充较慢。我们在这里使用基于膜的芯片介绍了光干扰光谱,该芯片使我们能够观察到这些现象的原位动力学,以至于以毫秒为单位的时间分辨率,以至于亚纳米计尺度。该设备由带有积分光子晶体的介孔硅膜(平均孔径6 nm)组成,该薄膜允许同时测量薄膜干扰的相位移位以及在吸收时光子晶体的共振。对于苯乙烯二聚体,我们找到了一个没有前体膜的扁平液体,而五聚体则形成了在毛细管填充的半月板前移动的扩展的分子薄膜。与五聚体的吸入动力学相比,这些不同的行为归因于孔隙表面扩散的速度明显更快,反之亦然。此外,两种低聚物都表现出异常的缓慢吸收动力学,这可以分别通过散装值的明显粘度和11倍来解释。然而,通过一个收缩模型来实现对动力学的更一致的描述,该模型强调了孔半径中局部起伏的重要性,其分子尺寸的重要性不断增加,并且包括孔隙壁上的亚纳米水动力死亡,固定区,但否则使用散装流体参数。总体而言,我们的研究表明,使用介孔培养基的干涉,光富集实验可以对聚合物液体的纳米 - 雷学进行详细的探索。
本综述重点介绍了聚烯烃在高压直流 (HVDC) 电缆和电容器中的应用。首先简要介绍 HVDC 电缆和电容器的最新发展和当前用途,然后介绍电绝缘和电容器功能的基础知识。介绍了确定介电性能的方法,包括电荷传输、空间电荷、电阻率、介电损耗和击穿强度。介绍了聚乙烯和全同立构聚丙烯的半结晶结构,并讨论了其与介电性能的关系。本综述的很大一部分致力于描述聚烯烃电或介电性能的建模和预测的最新进展,同时考虑了原子和连续方法。此外,还介绍了材料纯度和纳米颗粒存在的影响,并以这些材料的可持续性方面结束综述。总之,有效利用建模与实验工作相结合是理解和设计下一代高压输电电绝缘材料的重要途径。
图1 |在紧张的扭曲的双层石墨烯设备中,隧道光谱的演变具有连续变化的扭曲天使,跨越了多个魔法角度。a,样本示意图。tbg堆叠在HBN底物上,而在STM尖端和TBG之间的偏置电压V B通过石墨电极应用。底部显示了三种类型的堆叠配置(AA,AB和DW)。b,TBG上的大面积的STM地形图,由两个图像(200 nm×200 nm和100 nm×100 nm,偏置电压v B = -800 mV,隧道电流I T = 20 PA),未锁定的黄色盒子标记了研究区域,而黑点则表示扩展区域(见图。S1用于整个研究区域)。c,莫伊尔三角波长及其相应计算的扭曲角。左图是b中的黄色虚线盒中的区域。B和C中的两个红色三角形对应于同一位置。l 1,l 2,l 3定义为每个Moiré三角形的三个边的长度,这些长度绘制在右图中。每个Moiré三角形的相应计算的扭曲角和应变值显示在右Y轴上。d,七个AA站点中心的隧道光谱,在c中以红点为标志。魔法角度为红色。e,d i /d v colormap沿着C,AA,AB,DW,BA和AA站点的橙色虚线采集。e的上面板详细指示了虚线的路由。f,d i /d v colormap沿C中的箭头白色虚线采集,其中还标记了七个AA位点的位置。设定点:d -f,v s = -200 mV,i t = 200 pa。