1. 小分子药物设计。小分子药物又称化学药物,是种类最广泛的药物。小分子药物设计分为两个阶段:从头设计和先导化合物优化。• 从头设计。从头药物设计旨在从头开始生产具有理想药理特性的新型、多样化药物分子。关键挑战是有效地遍历离散的化学空间。具体而言,为了规避药物分子的离散性质并减轻强力试错策略,[2]将离散药物分子放宽为可微分支架树 (DST),以使基于梯度的数值优化能够直接更新可微分分子,从而实现基于梯度的药物分子优化。实证研究表明,所提出的 DST 方法具有更高的样本效率,能够在数千次评估(Oracle 调用)中识别所需的分子。Oracle 调用可以是体内实验,也可以是体外实验,而且成本总是很高。这意味着我们的方法将大大降低药物设计的成本。此外,受遗传算法优越但不稳定的性能(由于随机游走行为)的启发,强化遗传算法 [ 1 ] 被设计用于抑制随机游走行为,该算法利用强化学习对有希望的搜索分支进行优先排序并智能地导航离散空间。 生成的分子可以紧密结合与某些重大疾病密切相关的目标蛋白,例如 PDB ID 为 7l11 的靶标,它是 SARS-COV-2(2019-NCOV)主蛋白酶。 此外,为了量化不确定性并彻底探索化学空间,多约束分子采样(MIMOSA)[ 15 ]将药物设计问题公式化为从药物空间上的目标分布中抽样的采样问题。 理想的药物分子具有较大的概率,然后设计一种马尔可夫链蒙特卡洛(MCMC)方法与预训练的图神经网络相结合,从目标分布中采样。 与最强基线相比,它获得了高达 49% 的改进。 • 先导化合物优化。先导化合物优化的目的是通过改善先导化合物的药学特性(如降低毒性、改善吸收)并保持其与先导化合物的相似性来增强先导化合物(通常是从头设计中最有前途的分子)。关键挑战在于满足多个约束条件。为了明确增强相似性约束,复制和细化策略(CORE)[17]旨在利用注意机制从输入的药物分子中选择现有的子结构(子结构是基本构建块),而不是在整个子结构空间中搜索。除了在多个任务中不断改进之外,CORE 在具有稀有子结构的分子中取得了尤为出色的表现,成功率提高了 11%。此外,先导化合物优化需要输入和输出药物分子的大小保持一致。为了满足这一要求,提出了带分子奖励的深度生成模型 (MOLER) [ 14 ],将约束条件代入学习目标中的可微损失函数中。这是一种与模型无关的方法,可以增强几乎所有深度生成模型。
主要关键词