Loading...
机构名称:
¥ 1.0

摘要:传统的高通量筛选 (HTS) 药物发现效率低下。具有临床治疗潜力的化合物的命中率通常为 0.5%,最多只有 2%。深度学习模型将筛选率提高到 28%;然而,这些结果包括与治疗无关浓度的命中、训练集的新颖性不足以及遍历有限的化学空间。这项研究介绍了一种新型人工智能 (AI) 驱动平台 GALILEO 和分子几何深度学习 (Mol-GDL) 模型 ChemPrint。该模型部署了 t 分布随机邻域嵌入 (t-SNE) 数据分割,以在训练期间最大化化学差异,并部署了自适应分子嵌入,以增强预测能力并探索未知的分子领域。回顾性测试时,ChemPrint 的表现优于一组五个模型难以用药的肿瘤靶点 AXL 和 BRD4,使用 t-SNEsplit 实现平均 AUROC 得分 AXL 为 0.897,BRD4 为 0.876,相比之下,基准模型得分范围为 AXL 为 0.826 至 0.885,BRD4 为 0.801 至 0.852。在一项零样本前瞻性研究中,体外测试表明,ChemPrint 提名的 41 种化合物中有 19 种在浓度≤20µM 时表现出抑制活性,命中率为 46%。这 19 个命中报告的平均-最大 Tanimoto 相似度得分相对于其训练集为 0.36,得分为 0.13 (AXL)和 0.10(BRD4)相对于这些目标的临床阶段化合物。我们的研究结果表明,通过在具有最大差异性的数据集上训练和测试 ChemPrint 来增加测试集难度可以增强模型的预测能力。这导致发现具有低治疗浓度和高化学新颖性的高命中率的化合物库。综上所述,所提出的平台设定了新的性能标准。

ChemPrint:用于增强药物发现的 AI 驱动框架

ChemPrint:用于增强药物发现的 AI 驱动框架PDF文件第1页

ChemPrint:用于增强药物发现的 AI 驱动框架PDF文件第2页

ChemPrint:用于增强药物发现的 AI 驱动框架PDF文件第3页

ChemPrint:用于增强药物发现的 AI 驱动框架PDF文件第4页

ChemPrint:用于增强药物发现的 AI 驱动框架PDF文件第5页

相关文件推荐