1 趋化因子信号传导组,免疫学和肿瘤学系,国家生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 2 林雪平大学卫生、医学和护理科学系诊断和专科医学科,58185,林雪平,瑞典。 3 玛格丽塔萨拉斯生物研究中心(CIB-CSIC),28040,马德里,西班牙。 4 生物计算部门,国家生物技术中心(CNB-CSIC),Cantoblanco 校区,28049 马德里,西班牙。 5 西班牙马德里公主大学医院(IIS-Princesa)健康研究所免疫学系,28006。 6 加拿大安大略省汉密尔顿市麦克马斯特大学施罗德过敏和免疫学研究所麦克马斯特免疫学研究中心 (MIRC) 医学系,邮编 L8S 4L8。 7 弗朗西斯科维多利亚大学(UFV)实验科学学院,28223,马德里,西班牙。 8 B 淋巴细胞动力学,免疫学和肿瘤学系,国家生物技术中心 (CNB)/CSIC,坎托布兰科校区,28049,马德里,西班牙。 9 神经退行性疾病生物医学研究网络中心(CIBERNED),卡洛斯三世健康研究所,28029 马德里,西班牙 10 X 射线晶体学部门,大分子结构系,国立生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 * 通讯作者:Mario Mellado,西班牙马德里 28049 Cantoblanco, Darwin 3,CNB/CSIC 免疫学和肿瘤学系。电话:(+34)91/585-4852;传真:(+34)91/372-0493;邮箱: mmellado@cnb.csic.es
光学和电生理记录技术的进步使得记录数千个神经元的动态成为可能,为解释和控制行为动物的大量神经元开辟了新的可能性。从这些大型数据集中提取计算原理的一种有前途的方法是训练数据约束的循环神经网络 (dRNN)。实时进行此类训练可以为研究技术和医学应用打开大门,以在单细胞分辨率下建模和控制干预措施并驱动所需的动物行为形式。然而,现有的 dRNN 训练算法效率低下且可扩展性有限,使得即使在离线场景下分析大量神经记录也具有挑战性。为了解决这些问题,我们引入了一种称为循环神经网络凸优化 (CORNN) 1 的训练方法。在模拟记录研究中,CORNN 的训练速度比传统优化方法快 100 倍左右,同时保持或提高了建模准确性。我们进一步在数千个执行简单计算(例如 3 位触发器或定时响应的执行)的单元模拟中验证了 CORNN。最后,我们表明,尽管生成器和推理模型之间存在不匹配、观察到的神经元严重子采样或神经时间尺度不匹配,CORNN 仍可以稳健地重现网络动态和底层吸引子结构。总体而言,通过在标准计算机上以亚分钟级处理时间训练具有数百万个参数的 dRNN,CORNN 迈出了实时网络重现的第一步,该网络重现受限于大规模神经记录,并且是促进神经计算理解的强大计算工具。
摘要 之前,我们描述了大量果蝇菌株,每个菌株都携带一个人工外显子,其中包含一个基于 CRISPR 介导的同源重组插入目标基因内含子中的 T2AGAL4 盒。这些等位基因可用于多种应用,并且已被证明非常有用。最初,基于同源重组的供体构建体具有较长的同源臂(>500 bps),以促进大型构建体(>5 kb)的精确整合。最近,我们表明,供体构建体的体内线性化使得能够使用短同源臂(100-200 bps)将大型人工外显子插入内含子中。较短的同源臂使得商业合成同源供体成为可能,并最大限度地减少了供体构建体生成的克隆步骤。不幸的是,大约 58% 的果蝇基因缺乏适合所有注释异构体中人工外显子的编码内含子整合。在这里,我们报告了新构建体的开发,这些构建体允许用 KozakGAL4 盒替换缺乏合适内含子的基因的编码区,从而产生与目标基因类似地表达 GAL4 的敲除/敲入等位基因。我们还开发了定制载体骨架,以进一步促进和改善转基因。在包含目标基因 sgRNA 的定制质粒骨架中合成同源供体构建体,无需注射单独的 sgRNA 质粒,并显著提高了转基因效率。这些升级将使几乎所有果蝇基因都能靶向,无论外显子-内含子结构如何,成功率为 70-80%。
阿片类药物使用障碍(OUD)是一种公共卫生危机,目前因使用率增加和大多数是芬太尼的合成阿片类药物而加剧了。因此,鉴定新的生物标志物和减少有问题的芬太尼使用并复发到芬太尼服用的策略至关重要。近年来,越来越多的工作表明,肠道微生物组可以作为对兴奋剂和阿片类药物的行为和转录反应的有效调节剂。在这里,我们推进了这项工作,以定义微生物组驱动芬太尼摄入量和寻求芬太尼在翻译相关的药物自我管理模型中的操作。雄性大鼠的微生物组的耗竭,具有广谱抗生素会导致药物给药增加,固定比率增加,进行性比率和戒酒后寻求药物。利用这些动物的微生物组含量的16S测序,肠道微生物组的特定细菌群与药物服用水平紧密相关。此外,在微生物组操纵和芬太尼给药后对伏隔核的全球蛋白质组学分析,以定义微生物组状态如何改变该关键边缘子结构中功能性蛋白质组学景观。这些数据表明,改变的微生物组会导致突触蛋白组的明显变化,以响应重复的芬太尼处理。最后,微生物组消耗的行为效应是通过衍生的短链脂肪酸代谢物的辅助可逆的。综上所述,这些发现与肠道和底座基础中的肠道信号传导建立了明显的相关性,以在此空间中进行进一步的翻译工作。
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠、有效的气动弹性模型,该模型应能够将结构部分和气动部分耦合。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力面板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力面板和涡流模型 7 旨在提供改进的尾流建模;然而,两者都各有弱点,前者需要求解 Navier-Stokes 方程,计算量大;后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析正受到广泛关注,尽管目前已发现其对于大攻角不可靠。9 此外,由于计算需求的增加,它们的适用性仍然受到限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。 Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注了不稳定性问题、复杂流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人 11 提出了使用改进的条带理论进行气动弹性分析,同时还提出了一种基于谐波平衡法的气动弹性方案,12 大大减少了计算时间,并且证明比标准 BEM 方法更为稳健。13 通过使用三维模型进行数值研究,进一步研究了结冰对叶片气动行为的影响。一类更复杂的方法是基于 CFD 的分析,9,14 事实证明,这种方法与标准工业工具(如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。对于结构模型,除了标准方法(包括等效梁的构造)之外,还提出了其他方法,15包括可以适应大型叶片中遇到的大多数特征的薄壁梁模型 16,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片来说可以忽略不计,但对于大型柔性叶片来说并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,
背景。日冕环是太阳高层大气的基本构成要素,在极紫外和 X 射线中可见。了解日冕环如何产生能量、构造和演化是理解恒星日冕的关键。目的。我们在此研究光球磁对流如何产生加热日冕环的能量,并将其传输到高层大气中,以及日冕磁环的内部结构如何形成。方法。在 3D 磁流体动力学模型中,我们使用 MURaM 代码研究了一个孤立的日冕环,其两个足点都位于对流区内的浅层中。为了解决其内部结构,我们将计算域限制为一个矩形框,其中包含一个日冕环作为拉直的磁通量管。考虑了场对准热传导、光球层和色球层的灰辐射传输以及日冕中的光学薄辐射损失。足点被允许与周围的颗粒物自洽地相互作用。结果。环被坡印廷通量加热,该通量是通过光球中单个磁场浓度的小尺度运动自洽产生的。由于足点运动,大气上层形成了湍流。我们几乎看不到来自给定足点的不同光球浓度的磁通量管大规模编织加热的迹象。合成发射,就像大气成像组件或 X 射线望远镜所观察到的那样,揭示了响应加热事件而形成的瞬态亮线。总体而言,我们的模型粗略地再现了在日冕环(子结构)内观察到的等离子体的性质和演化。结论。利用这个模型,我们可以建立一个连贯的图像,展示加热太阳表面附近高层大气的能量通量是如何产生的,以及这个过程是如何驱动和控制日冕环的加热和动态的。
虽然人工智能广泛应用于生物医学研究和医学实践,但其使用仅限于少数特定的实际领域,例如放射组学。“生物学和医学中的人工智能”研讨会(耶路撒冷,2023 年 2 月 14 日至 15 日)的参与者,包括研究人员和从业者,旨在通过探索人工智能的进步、挑战和观点来构建整体图景,并为人工智能应用提出新的领域。演讲展示了大型语言模型 (LLM) 在生成分子结构、预测蛋白质-配体相互作用和促进人工智能开发民主化方面的潜力。还讨论了医疗决策中的伦理问题。在生物应用中,多组学和临床数据的人工智能整合阐明了低剂量电离辐射对健康的相关影响。贝叶斯潜在模型确定了未观察变量之间的统计关联。医疗应用强调了非侵入性诊断的液体活检方法、识别被忽视疾病的常规实验室检查以及人工智能在口腔颌面成像中的作用。可解释的人工智能和多样化的图像处理工具改进了诊断,而文本分类则检测到了博客文章中的厌食行为。研讨会促进了知识共享和讨论,并强调了在放射防护研究中进一步发展人工智能以支持新出现的公共卫生问题的必要性。组织者计划继续将该计划作为一项年度活动,促进合作并解决人工智能应用中的问题和观点,重点是低剂量放射防护研究。邀请参与放射防护研究的研究人员和相关公共政策领域的专家在下一次研讨会上探讨人工智能在低剂量辐射研究中的效用。
该项目的目标是制定有限元分析在船舶结构设计和评估中的应用指导说明。当前的设计和评估实践包括广泛使用强大的数值建模技术,如果应用不当,可能会导致分析结果的质量和可靠性差异很大。该项目的目标是为审查与 FEA 质量保证 (QA) 相关的方面提供指导,包括进行 FEA、软件和人为因素所使用的程序。2.0 背景 2.1 船舶结构委员会 (SSC387) 于 1996 年处理了这个问题,然而,在过去的 15 年中,有限元建模的使用在以下方面取得了进展:• 可用工具(例如自动网格划分、与绘图/实体建模工具的交互),• 考虑的材料(钢、铝、塑料、复合材料、非线性(屈服后)行为),• 负载条件(例如流体结构相互作用、碰撞、爆炸模拟),• 分析类型(隐式与显式(时间域)建模),• 元素公式(非线性、混合和接触元素),以及• 结构几何形状(裂纹尖端元素、连接和焊件、接触/滑动部件装配)。2.2 此前 SSC 对此主题的处理以及其他行业指南提供的指导侧重于: • 船舶结构的线性弹性分析, • 仅限于自然频率(模态)分析的动态分析, • 结构组件而非连接和整船模型,不处理子结构, • 各向同性材料, • 局部载荷而非整船载荷, • 基准建模工具,以及 • 错误检查程序的开发。2.3 为了产生高质量的有限元分析结果,需要对模型准备和解释进行指导,以便从当前先进的数值建模工具中开发出一致的质量水平。本指南可以考虑: • 规划和准备, • 工程模型的开发, • 有限元模型的构建, • 有限元模型的执行,以及 • 结果的解释 3.0 要求
摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
摘要背景:确定新靶点对于开发更有效的药物和改善非小细胞肺癌 (NSCLC) 的治疗至关重要,NSCLC 是全球癌症相关死亡的主要原因。由于细胞在肿瘤发生和癌症进展过程中会改变其代谢重组,因此针对关键代谢因子和代谢相关蛋白是一种具有很高治疗潜力的有价值的方法。代谢适应性依赖于热休克蛋白 (HSP) 的功能,热休克蛋白是一种分子伴侣,可促进代谢酶的正确折叠及其在大分子结构中的组装。方法:通过从基因筛选中获得的数据集进行生物信息学分析来确定基因适应性。通过免疫组织化学方法评估 NSCLC 患者福尔马林固定石蜡包埋组织的 HSPD1 表达。使用含有和不含细胞毒性试剂的实时增殖测定、菌落形成测定和细胞周期分析来监测体外不同 NSCLC 细胞的生长和药物敏感性。通过对免疫缺陷小鼠进行皮下注射来监测体内生长情况。通过细胞外代谢通量分析来分析细胞代谢活性。通过 CRISPR/Cas9 引入特定敲除。结果:我们发现热休克蛋白家族 D 成员 1 (HSPD1 或 HSP60) 是一种生存基因,在 NSCLC 中普遍表达并与患者预后不良有关。HSPD1 敲低或小分子 KHS101 对其化学破坏会诱导氧化磷酸化的急剧分解,并抑制体外和体内细胞增殖。通过将药物分析与转录组学相结合并通过全基因组 CRISPR/Cas9 筛选,我们证明 HSPD1 靶向抗癌作用依赖于氧化磷酸化和经过验证的 KHS101 敏感性分子决定因素,特别是肌酸转运蛋白 SLC6A8 和细胞色素 c 氧化酶复合物 COX5B 的亚基。