1,2 E&CED NIT Hamirpur 摘要- 降低 IC 功耗是当今人们关注的重点。随着 MOS 器件的广泛应用,人们越来越需要功耗更低的电路,尤其是对于使用电池供电的便携式设备,如笔记本电脑和手持式电脑。存储元件消耗了 IC 总功耗的 70%。由于触发器是便携式设备中使用的存储元件的主要部分,因此降低触发器功耗的主要关注点将有助于我们在很大程度上降低 IC 的功耗。减少时钟晶体管的数量可以很好地降低其功耗。由于使用传统 CMOS 逻辑设计的触发器比使用传输门和传输晶体管设计的触发器消耗更多功率,而门控触发器将减少输入和输出相同时不必要的晶体管切换。因此,使用传输门和传输晶体管的门控触发器可用于降低平均功耗。本文提出了一种门控触发器,并将其功耗与输入频率结果与时钟对共享触发器 (CPSFF) 进行了比较。采用 180nm 技术的 Tanner EDA 工具。使用 Cadence EDA 工具设计布局 关键词 - 传输晶体管、传输门、CPSFF、功耗
虽然半导体电路的小型化仍在继续,但它已不再遵循摩尔定律,摩尔定律预测每 18 个月单位面积晶体管数量将翻一番。这种小型化必须在可预见的未来达到其物理极限。克服这一障碍的一种可能途径是使用分子电子学,其中单个分子将充当电子设备的构建块,例如晶体管或存储元件。张 1 最近的一篇评论文章展示了一个活跃的研究领域。Schaub 等人 2,3 报道了一种可控开关,由沉积在 Cu-(110) 表面上的偶氮苯分子组成。如果施加大于 0.3 V 的电压,则可以产生两种对称性相关的互变异构体中的一种,具体取决于扫描隧道显微镜 (STM) 尖端的位置。较小的电压允许在不改变分子的情况下确定其当前的互变异构状态。翻译成计算语言,这构成了一个可以写入和读取的存储元件。不幸的是,STM 尖端需要移动到分子上方的正确位置,这使得操作无法以可能与当前微电子器件相媲美的频率进行。另一个问题是,电导率的变化只与表面垂直的方向有关,因为支撑金属会使任何平行于表面的电压短路。为了制造出可用于电子设备的分子,必须具备三个先决条件:双稳态、
标准表面微加工技术的三层多晶硅工艺。大多数平面 MEMS 元件都是使用此技术制造的。在 MUMP 技术中,多晶硅作为微系统技术传感器和执行器元件的结构材料是合理的,因为这种材料具有良好的机械性能。特点 - 能够在一个制造过程中以较小的变化创建大量不同功能的 MEMS 元件,以及在同一基板上集成创建传感器和执行器元件以及信息处理、传输和存储元件的可能性。
摘要 — 本文介绍了一种由辐射无线电力传输供电的无电池蓝牙低功耗 (BLE) 无线传感器节点的设计和特性。作为无线网状网络的一部分,无电池传感器节点经过优化,能够执行物理测量(温度和湿度),并通过无线网络在互联网上共享这些测量数据。它使用 220 µF 的标准电容器作为存储元件,并由专用 RF 源通过辐射无线电力传输进行远程供电。使用 BLE 协议进行主要任务初始化、感测和广播测量数据每项任务仅需要 1.2 mJ 的能量。通过控制 RF 源的辐射功率,可以粗略地控制物理测量的周期性。
本节简要概述了不同的盾牌,它们为其设计的用途以及它们提供的目的:•探索器工具包的能量收集盾牌始终需要连接到探险家工具包才能操作。盾牌被签署,以提供探险家工具箱板上的多协议无线SOC。•双收割机盾牌设计为具有一个或两个能源,一个存储元件,具有或没有输入适配器。要添加外围设备,可以选择将Mikrobus点击板TM与双收割机盾1一起添加到板堆中。•动力学按钮屏蔽提供了无线SOC为无需其他组件提供动力所需的一切。一旦将与设计的固件应用程序相结合,它将只能开箱即用。该板不允许与其他点击板一起进一步堆叠TM
从历史上看,能源供应和分配的大部分都是从生产者到消费者的垂直结构。公用事业负责这种类型的转移,区分发电、输电、配电和供应步骤。该系统的目标是通过利用每个步骤的规模经济来最大限度地降低系统总成本,从而导致大型发电厂的建设位于主要燃料来源附近或大型工业客户附近。1973 年的第一次石油危机引发了全球对能源供应安全性和质量的认识的转变,以及将能源载体多样化到其他来源的迫切需要。在这种以大型为中心的能源生产背景下,整个能源分配是为了将负荷与发电量相匹配而创建的,这意味着生产的能源必须随时消耗,电网的设计目的是将能源从发电厂输送到消费者。此外,由于缺乏智能计量技术,电网运营商一直缺乏对客户负荷曲线的详细了解,因此只能根据生产情况调整消费。在此期间,一些社会影响因素,如高质量服务期望和环保意识,并不像现在那么重要。随着总体人口、经济和技术资源丰富程度的不断变化,能源网及其不同用途必须适应新的制约因素。例如,通过确定发展特定州的能源自主权的目标,减少大都市的污染,逐步用可持续能源取代化石能源。
锂离子电池被认为是电动汽车 (EV) 的重要电存储元件。电池模型是电池监控、高效充电和安全管理的基础。非线性建模是表征电池及其动态内部参数和性能的关键。本文提出了一种智能方案,用于对锂聚合物离子电池进行建模,同时监测其在不同环境条件(温度和相对湿度)下的当前充电电流和端电压。首先,建议的框架使用恒流恒压 (CC-CV) 充电协议研究了温度和相对湿度对充电过程的影响。随后,将监测电池周围的工作温度和相对湿度。因此,使用 Hammerstein-Wiener (HW) 模型对 EV 电池动态行为进行有效的非线性建模。HW 模型被认为是一种黑盒模型,它可以表示电池而无需任何数学等效电路模型,从而降低了计算复杂度。最后,该模型确定了不影响电池寿命的充电过程的边界。应用并进行了几个动态模型的实验测试,以确保