我还感谢达卡Diit讲师Mizanur Rahman为我们提供了成功完成该项目的设施。我还对达卡(Dhaka)的DIIT讲师,讲师为我们提供了成功完成该项目的设施。我也表示感谢Mushfiqur Rahman,Dhaka Diit讲师,为我们提供了成功完成该项目的设施。
基于事件的传感是一种相对较新的成像模态,可实现低潜伏期,低功率,高时间分解和高动态范围采集。这些支持使其成为边缘应用和在高动态范围环境中的高度可取的传感器。截至今天,大多数基于事件的传感器都是单色的(灰度),在单个通道中捕获了Visi-ble上广泛光谱范围的光。在本文中,我们介绍了穆斯特朗事件并研究了它们的优势。尤其是我们在可见范围内和近红外范围内考虑多个频段,并探索与单色事件和用于面部检测任务的传统多光谱成像相比的潜力。我们进一步发布了第一个大型双峰面检测数据集,其中包含RGB视频及其模拟色彩事件,N-Mobiface和N-Youtubefaces,以及带有多光谱视频和事件的较小数据集,N-SpectralFace。与常规多频谱图像的早期融合相比,多阶段事件的早期融合可显着改善面部检测性能。此结果表明,相对于灰度等效物,多光谱事件比传统的多光谱图像具有相对有用的有关场景的信息。据我们所知,我们提出的方法是关于多光谱事件的首次探索性研究,特别是包括近红外数据。
随着手机摄像头的质量开始在现代智能手机中发挥关键作用,人们越来越关注用于改善手机照片各个感知方面的 ISP 算法。在这次移动 AI 挑战赛中,目标是开发一个基于深度学习的端到端图像信号处理 (ISP) 管道,该管道可以取代传统的手工制作的 ISP,并在智能手机 NPU 上实现近乎实时的性能。为此,参赛者获得了一个新颖的学习到的 ISP 数据集,其中包含使用索尼 IMX586 Quad Bayer 移动传感器和专业的 102 兆像素中画幅相机拍摄的 RAW-RGB 图像对。所有模型的运行时间都在联发科 Dimensity 1000+ 平台上进行评估,该平台配备专用的 AI 处理单元,能够加速浮点和量化神经网络。所提出的解决方案与上述 NPU 完全兼容,能够在 60-100 毫秒内处理全高清照片,同时实现高保真效果。本文提供了本次挑战赛中开发的所有模型的详细描述。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
NYU上海是纽约大学全球网络中的第三级授予校园。这是中国的第一家高等教育合资企业,被授权授予在美国和中国获得认证的授予学位。所有教学均以英语进行。一所具有文科和科学的研究大学的核心,纽约大学上海居住在世界上拥有充满活力的知识分子社区的世界伟大城市之一中。nyu上海招募了最高才能的学者,他们致力于纽约大学对变革性教学和创新研究的全球愿景,并体现我们所生活的全球社会。
大肠疾病属由几种物种和神秘的进化枝组成,包括e。大肠杆菌,表现为脊椎动物的肠道共生,也是腹泻和肠外疾病的机会性病原体。为了表征该属内肠外毒力的遗传确定者,我们对代表Escherichia Genus Genus Genologenogencementic多样性的370个共生,致病性和环境菌株进行了一项无偏的基因组研究(GWAS)研究(GWAS)。albertii(n = 7),e。fergusonii(n = 5),大肠杆菌(n = 32)和e。大肠杆菌(n = 326),在败血症的小鼠模型中进行了测试。我们发现,编码Yersiniabactin siderophore的A高致病岛(HPI)的存在与小鼠的死亡高度相关,与其他相关遗传因素相关,也超过了与铁的摄取相关的其他相关遗传因素,例如Aerobactin和Sitabcd operons。我们通过删除e中HPI的关键基因来确认体内关联。大肠杆菌菌株在两个系统发育背景下。然后,我们在E的一部分中搜索了毒力,铁捕获系统和体外生长之间的相关性。大肠杆菌菌株(n = 186)先前在生长条件下表型,包括抗生素以及其他化学和物理胁迫。我们发现,在存在大量抗生素的情况下,毒力和铁捕获系统与生长呈正相关,这可能是由于毒力和耐药性的共选择。我们还发现在存在特定抗生素的情况下毒力,铁摄取系统与生长之间的负相关性(i。e。头孢霉素和毒素),这暗示了与内在毒力相关的潜在“侧支敏感性”。这项研究表明铁捕获系统在大肠疾病的肠外毒力中的主要作用。
摘要 人工智能 (AI) 是一门科学,它涉及开发模仿人类智能的机器。机器学习 (ML) 是人工智能的一个子域,其中机器可以自动从数据中学习,而无需明确编程。农业不断受到压力,以用更少的资源生产更多。AI 和 ML 技术能够通过分析农业数据来优化资源利用率。它通过预测各种输入参数和预测作物的收获后寿命改变了当今农业的面貌。本章讨论了可用的不同 AI 和 ML 技术以及它们如何在农业生命周期的不同阶段使用。本章涵盖了农业中需要 AI 和 ML 的广泛领域。它包括土壤、灌溉和疾病管理。本章还介绍了人工智能在植物表型组学领域的重要性。本章讨论了地理信息系统 (GIS) 和遥感与人工智能相结合的可能用途。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
在依赖发明人了解潜在的现有技术时,尤其是对于使用人工智能的发明,您应该谨慎行事。许多公司和大学都强烈鼓励发明人寻找在现有流程中实施人工智能的方法,这导致许多发明人无意中重新发明了其他人可能已经探索或实施的东西。当然,这并不一定意味着两组发明人都发明了相同的解决方案。如果您确实发现了这样的问题,您应该彻底调查这些方法是否真的相同,或者这些方法之间是否存在差异,这些差异可能足以证明新颖性和非显而易见性。请参阅显而易见性驳回:攻击表面案例和显而易见性驳回:反驳表面案例。
参考[1] Hou,Saihui等。“通过重新平衡来逐步学习统一的分类器。”CVPR2019。[3] Liu,Yaoyao,Bernt Schiele和Qianru Sun。“用于课堂学习学习的自适应聚合网络。”CVPR 2021。[4]刘,Yaoyao,Bernt Schiele和Qianru Sun。“ RMM:用于课堂学习学习的增强记忆管理。”神经2021。[5] Rebuffi,Sylvestre-Alvise等。“ icarl:增量分类器和表示学习。”CVPR2017。[6] Li,Zhizhong和Derek Hoiem。“学习而不会忘记。”TPAMI2017。