医学是深度学习模型的重要应用领域。该领域的研究是医学专业知识和数据科学知识的结合。在本文中,我们引入了一个开放的三维颅内动脉瘤数据集 IntrA,而不是二维医学图像,这使得基于点和基于网格的分类和分割模型的应用成为可能。我们的数据集可用于诊断颅内动脉瘤和提取颈部以进行医学和深度学习其他领域(如正常估计和表面重建)的夹闭手术。我们通过测试最先进的网络提供了一个大规模分类和部分分割的基准。我们还讨论了每种方法的性能,并展示了我们数据集的挑战。发布的数据集可以在这里访问:https://github.com/intra3d2019/IntrA。
机器学习的快速增长已大大改变了各种行业,包括健康,金融和自治系统。了解这个动态领域的趋势对于指导研究,分配资源和预期未来的发展至关重要。本研究通过研究科学文章的标题和摘要来解决2014年至2024年机器学习研究中进行全面趋势分析的必要性。通过提取描述性限定词,我们将文章分类为特定的主题,并随着时间的推移分析了它们的演变。我们的方法包括对预选赛的详细研究,对这些资格符与关联规则的共同存在的研究,文章的主题分类以及每个主题的趋势预测。关键发现突出了“人工神经网络和深度学习”等主题的持续突出以及“生成模型”等新领域的出现。分析显示研究重点的重大转变,并确定了一致的趋势,为该领域的发展提供了宝贵的见解。这项研究证明了文本挖掘技术在跟踪和预测研究趋势中的有效性。
NYU上海是纽约大学全球网络中的第三级授予校园。这是中国的第一家高等教育合资企业,被授权授予在美国和中国获得认证的授予学位。所有教学均以英语进行。一所具有文科和科学的研究大学的核心,纽约大学上海居住在世界上拥有充满活力的知识分子社区的世界伟大城市之一中。nyu上海招募了最高才能的学者,他们致力于纽约大学对变革性教学和创新研究的全球愿景,并体现我们所生活的全球社会。
然而,一个限制是,AI系统需要大量高质量数据来最大限度地减少其结果的偏差。在外科领域实施AI的其他担忧是在数据处理和分析时存在保密风险和患者信息完整性丧失的风险。对此,世界卫生组织明确了其在医学领域使用AI的道德立场。他们强调根据正义、仁慈、患者自主和非恶意原则实施AI使用的重要性。关于在医学中使用AI的法律框架,世界上最先进的卫生系统已经出台了新的法规。然而,这一领域在不久的将来仍将不断发展(1,6)。近年来,AR和虚拟现实(VR)在改善外科领域的教学过程方面发挥了重要作用。这些日益普及的技术进步使医学生、住院医生和研究员能够沉浸在模拟和控制的场景中,从而获得培训过程中所需的手术技能和能力。AR 和 VR 的优势包括缩短学习曲线时间、通过不将真实患者暴露于学习目的来减少可能的手术并发症以及使用先前建立和验证过的课程 (8)。同样,
1. 首先将双手举起,摆动手指,并用嘴巴发出柔和的呼呼声 2. 反复搓手掌 3. 打响指 4. 拍大腿,左右交替 5. 拍手或跺脚 6. 大声拍手 7. 然后反转……直到回到摆动手指和柔和呼呼的声音! 8. 你刚刚制造了一场暴风雨!
编辑委员会博士Mustafa Necmiİlhan博士 - 加兹大学 - Özlemçakir博士 - DokuzEylül大学协会。MehmetMerveÖzaydın-AnkaraHacıBayramVeli University Assoc。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
在本文中,我们从现代 Hopfield 模型的角度研究表格学习。具体来说,我们使用广义稀疏的现代 Hopfield 模型来学习表格数据表示和预测。在这项工作中,引入了 BiSHop(双向 S 分析 Hop 场模型)作为端到端表格学习的创新框架,解决了深度表格学习中的两个挑战:非旋转不变数据结构和特征稀疏性。受到联想记忆和注意力机制之间新建立的联系的启发,BiSHop 采用了双组分策略。它通过双向学习模块按列和按行顺序处理数据,每个模块都配备广义稀疏 Hopfield 层。这些层通过引入可学习的稀疏性扩展了传统的 Hopfield 模型。从方法论上讲,BiSHop 支持多尺度表示学习,能够有效地捕捉特征内和特征间的交互,并在各种尺度上具有自适应稀疏性。在各种真实世界数据集上进行的经验验证表明,BiSHop 以更少的超参数优化 (HPO) 运行超越了当前最先进的方法的性能,标志着深度表格学习的重大进步。
摘要3 1简介3 1.1 SWE的定义3 1.2 SWE估算的意义和动机4 1.3当前的操作SWE监视5 1.3.1地面测量6 1.3.2模型产品7 1.4 ML 9 1.5当前挑战9 2。SWE估计方法的历史发展10 2.1经验方法10 2.2基于物理的方法11 2.3数据驱动方法13 3.当前基于机器学习的SWE估计研究15 3.1早期努力(2000-2014)15 3.2最新技术(现状)(现状)(2014年至今)18 4。ml福利和瓶颈20 5。讨论和未来方向26 5.1 SWE的广义AI 26 5.2 SWE的自学习剂26 5.3将SWE AI纳入较大的地球AI模型27 6.结论28作者贡献28致谢28资金28参考28
摘要 - 手动跟踪教室出勤,这是一种备受推崇的传统方法,由于其对错误和效率低下的敏感性而提出了重大挑战。这些限制不仅消耗了宝贵的教师时间,而且损害了学术记录的准确性,从而影响了学生参与和表现的评估。回答这个问题,我们提出了一种使用基于机器学习的识别系统自动化课堂出勤的方法。这项研究旨在提高教育环境中出勤跟踪的准确性,效率和可靠性。我们研究的核心在于系统的设计和实施,阐明体系结构,数据流和集成到课堂环境中。我们的分析结果表明该系统可以跟踪出勤率的能力,同时提供有关其性能指标的准确信息。我们还深入研究了在课堂上实施此类技术的道德和实际考虑。通过使用基于机器学习的识别来自动化该过程,教育机构可以提高其运行效率,降低错误,并最终提供更有生产力的学习环境。我们的研究为教育研究和技术进步的未来途径打开了大门。关键字 - 自动出勤,出勤跟踪,面部识别,机器学习,课堂技术