让机器具备常识和特定领域的知识,使它们能够像人类一样理解某些问题领域,这一直是人工智能研究的主要目标,现在仍然是。在这种情况下,一个关键问题是,将所有相关知识编码成机器可以利用的自动推理、不一致性检测等方式的成本实际上有多高。虽然最近有一些研究开发了可以估算知识工程项目成本的方法 [12],但可以合理地假设并非所有相关知识都可以手动编码。通过分析人类行为及其产生的数据来提取和发现知识的技术可以在这方面做出重要贡献。本体学习领域是 Alexander Mädche 和 Steffen Staab 于 2001 年创造的一个术语 [7],它涉及从数据中得出相关本体知识的方法的开发。到目前为止,该领域已经进行了十多年的深入研究。该领域早期的研究集中于将浅层方法应用于术语和概念提取以及层次和非层次关系提取 [7]。后来,在我的博士论文《从文本中进行本体学习和填充:算法、评估和应用》中,我将本体学习定义为从数据中获取领域模型,并尝试通过引入所谓的本体学习层来系统地概述本体学习任务,这从那时起就受到了广泛关注。近年来,一些研究人员试图提高从文本数据中学习到的本体的表达能力,特别是尝试提取更深层次的公理知识(例如参见 [13]、[14] 和 [4])。本卷中也可以找到一些类似的贡献,例如旨在通过应用归纳技术学习 OWL 公理(参见本卷中的 Lehmann 等人 [5] 和 Lisi [6])。本体学习的问题比预期的要困难得多。在我看来,主要原因是本体总是反映概念化世界或给定领域的方式,而从一组数据中学习的本体学习算法的结果本质上反映了所讨论数据集的特性。因此,将本体算法的结果转化为实际上反映领域概念化的本体可能比从头开始构建本体的成本更高。本体学习的问题比预期的要困难得多。在我看来,主要原因是本体总是反映概念化世界或给定领域的方式,而从一组数据中学习的本体学习算法的结果本质上反映了所讨论数据集的特性。因此,将本体算法的结果转化为实际上反映领域概念化的本体可能比从头开始构建本体的成本更高。而本体学习算法从一组数据中学习的结果本质上反映了数据集的特性。因此,将本体的结果转化为
主要关键词