在1950年代和1960年代,有一个假设是道路安全的主要目标是纠正人类行为,而不是承认碰撞的原因与使用现有道路基础设施的固有风险有关。目前,对道路碰撞的分析涉及试图了解碰撞中涉及的所有因素,以提出可以预防它的方法。在1970年代,每年英国的道路上平均有7,000人被杀。然而,到2010年,尽管道路上的车辆数量增加了,但该数字已降至不到2,000。这在很大程度上归因于国家和地方一级的教育,培训和宣传计划的改进。特定的干预措施,例如针对所有驾驶员和汽车乘客的强制安全带,都大大提高了乘员安全。尽管如此,自2010年以来,每年在道路上被杀的人数一直保持在1,700至1,900左右。其中许多死亡是行人,骑自行车的人和摩托车手。在1997年,瑞典议会批准了零视力,基于一个基本原则:“在道路运输系统中移动时,人们在道德上被杀害或严重受伤是不可接受的。”这个愿景是安全系统方法的先驱。
尊敬的 Wenstrup 主席和 Ruiz 排名成员,我们,签名的免疫、公共卫生和医疗组织和个人,写信表达我们对美国疫苗安全系统的强烈支持。事实上,我们认为美国的疫苗安全系统是世界上最全面的系统之一。促进强大疫苗安全系统的公共政策符合我们所有人的最佳利益。虽然疫苗是市场上经过最严格测试和最安全的医疗产品之一,并且 COVID-19 疫苗(与所有疫苗一样)继续受到严格安全监控,但如果持续增加资金以利用大数据、了解不良反应背后的生物学机制和基因组学的新能力,疫苗安全监测将受益匪浅。在新冠疫苗推出期间,美国有 12 个独立系统监测新冠疫苗的安全性,分别是:V-Safe、疫苗不良事件报告系统 (VAERS)、疫苗安全数据链 (VSD)、临床免疫安全评估项目 (CISA)、国家医疗保健安全网络、食品药品管理局 (FDA) 的生物制品有效性和安全性系统、FDA 的哨兵计划、医疗保险和医疗补助服务中心 (CMS) 健康记录数据库、Genesis 以及退伍军人事务部、国防部和印第安人健康服务部使用的系统。这个监测网络意味着疾病控制和预防中心 (CDC) 与政府机构、医院系统、保险索赔数据以及医疗保健提供者和患者报告之间存在紧密协调。因此,公共卫生官员能够快速识别任何可能表明新冠疫苗安全性存在问题的信号。 2021 年春季,强生公司的疫苗被发现会导致一种罕见的凝血障碍,即血栓形成伴血小板减少症 (TTS)。因此,这一信号对于帮助医疗保健提供者识别患有 TTS 的患者并更有效地治疗他们至关重要。这也意味着强生公司的疫苗最终没有被考虑获得 FDA 的全面批准。
随着基于人工智能 (AI) 进步的系统和服务的创新,人们报告了其在广泛领域日益广泛使用所带来的脆弱性。在这些脆弱性中,嵌入式偏见或算法歧视已得到广泛认可,例如用于招聘决策、犯罪风险评估、医疗资源分配等的算法工具中的种族和性别偏见。为了解决嵌入式偏见问题,已提出了一些步骤,例如识别所使用的算法、了解解决方案的目标(例如考虑最终用户和/或数据中主体的多样性和代表性)、评估实现该目标的绩效(例如针对特定目标群体或有问题使用的情况进行测试)、根据绩效评估进行再培训以及引入监督机构。
摘要 - 在不断扩展的密码学领域,该项目引入了建立在Vigenère密码和Polybius Cipher的协同组合中的独特加密系统,用于加密,Base64,URI,Hex和Rot13用于编码。从这些经典的加密技术的优势中汲取灵感,该系统为增强信息安全性提供了新的视角。vigenère密码以其对频率分析的抵抗而闻名,引入了类似的替代方法。通过利用关键字驱动的循环移位,Vigenère密码为明文转换增添了复杂性,使简单的单足字符替换不足以进行解密。对此进行补充,Polybius Cipher采用基于基质的替换,将单个字母转换为网格上的坐标。此网格表示掩盖了原始消息中固有的语言模式。Vigenère和Polybius Ciphers的融合利用了其优点,从而产生了更强大的加密机制。这种混合方法将VigenèreCipher的多元代理复杂性与Polybius Cipher基于坐标的取代融为一体,从而引入了加密双层。这种增加的复杂性挑战了传统的密码分析方法,并有助于系统对攻击的强度。但是,这种加密系统的实施需要对其优点和局限性进行平衡。关键管理,对已知攻击的敏感性以及对现代安全范式的适应性等因素需要仔细评估。关键字 - 十六进制,rot13,uri,base64。
文章介绍了在直接侵略威胁时期联盟通信和自动控制系统(TOS和ACS)技术支持系统的运行模式、其主要要素及其之间的关系,以及在补充由于各种因素的影响而失效的通信设备时发生的过程。根据现代世界实践,进一步改进TOS和ACS系统的一个有希望的方向是使用射频识别和遥测技术,通过实时或接近实时地确定通信设备和财产在其运动动态中的坐标,以及使用有关通信设备和财产位置的信息来优化运送路线,以减少协会通信和自动控制系统技术支持系统执行活动的时间。所考虑问题的相关性使我们能够制定研究目标——提高协会 TOS 和 ACS 系统的运行效率。该项工作的主要成果是:确定了在直接侵略威胁期间影响协会中 TOS 和 ACS 系统运行的因素(并分类为几类);确定了表征建模的复杂组织和技术系统(TOS 和 ACS 系统)的参数,并检查了具有一定资质并分布在所研究系统各个层级的技术支持部门专家的活动。上述工作领域的科学新颖性在于为利用射频识别和遥测技术对通信设备和财产进行核算提供科学和方法支持。该领域工作的实际意义在于有可能在通信和自动控制系统的技术支持系统中利用官员在基于射频识别技术的通信设备记录过程中提出的技术建议。
在立即侵略威胁期间联合的自动控制系统(TOS和ACS),其主要要素及其之间的关系,在补充由于各种因素的影响而发生故障的通信设备时发生的过程。基于现代世界实践,进一步改进TOS和自动化控制系统的一个有希望的方向是使用射频识别和遥测技术,通过实时或近距离确定设备和通信设备动态运动的坐标。实时,以及利用有关设备和通信资产位置的信息来优化交付路线,以减少完成协会通信技术支持系统和自动控制系统活动所需的时间。所考虑问题的相关性使我们能够制定研究目标——提高效率