摘要:二维(2D)半导体过渡 - 金属二甲藻元化(TMDC)是激动人心的兴奋性物理和下一代电子设备的令人兴奋的平台,从而提出了强烈的需求,以了解其增长,兴奋剂和异质结构。尽管在固体源(SS-)和金属 - 有机化学蒸气沉积(MOCVD)中取得了显着进展,但仍需要进一步优化,以增强高度结晶的2D TMDC,并具有受控的掺杂。在这里,我们报告了一种混合MOCVD生长法,该方法结合了液相金属前体沉积和蒸气相机 - chalcogen的递送,以利用MOCVD和SS-CVD的优势。使用我们的混合方法,我们证明了WS 2的生长,具有从分离的单晶结构域到各种底物的连续单层膜的可调形态,包括蓝宝石,SIO 2和AU。这些WS 2膜表现出狭窄的中性激子光致发光线的宽度,低至27-28 MeV和室温迁移率最高34-36 cm 2 v-1 s-1。通过对液体前体组成的简单修改,我们证明了V掺杂WS 2,Mo X W 1-X S 2合金和面内WS 2 - MOS 2异质结构的生长。这项工作提出了一种有效的方法,可以在实验室规模上满足各种TMDC合成需求。关键字:金属 - 有机化学蒸气沉积,2D半导体生长,过渡金属二甲构代化,掺杂,合金,WS 2,MOS 2,MOS 2
抽象锂 - 硫(Li - S)电池被认为是锂离子电池的有希望的下一代替代品,由于其高能量密度,用于储能系统。然而,尚未解决的几个挑战,例如导致电池自放电的多氧化还原航天飞机。在本文中,我们探讨了聚合物蚀刻离子轨膜作为LI - S电池中的分离器的使用,以减轻氧化还原班车的效果。与商业分离器相比,它们的独特优势在于它们非常狭窄的孔径分布,并且有可能以独立的方式量身定制和优化纳米孔的密度,几何形状和直径。直径在22到198 nm之间的各种聚对邻苯二甲酸酯膜,并且成功地整合到Li - S Coin细胞中。据报道的库仑效率高达97%,容量较小,为使用量身定制的膜在Li - S电池中的多氧化氧化还原航天飞机开辟了一条途径。
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
平面微电极阵列(MEAS) - 体外或体内 - 神经元信号记录缺乏对神经网络功能和突触可变性的详细理解所需的空间分辨率和功能的信号噪声比(SNR)。为了克服这些局限性,将高度可定制的三维(3D)打印过程与薄膜技术结合使用,并使用自动对准模板辅助的电化学沉积工艺来制造基于3D打印的衡量标准,以基于STI效率或灵活的底物。显示具有设计灵活性和身体鲁棒性的设备用于记录不同体外和体内应用中的神经活动,可实现高高度比率3D微电极高达33:1。在这里,测量在3D神经元培养物,视网膜外植体和活小鼠皮层中成功记录神经活动,从而证明了3D MEA的多功能性,同时保持高质量的神经记录。可自定义的3D MEA为在常规或各种病理状况下(体外和体内)研究神经活动提供了独特的机会,并有助于药物筛查和神经调节系统的开发,这些系统可以准确地监测大型神经网络的活性。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2024年8月19日发布。 https://doi.org/10.1101/2024.08.19.608611 doi:Biorxiv Preprint
在纳米级级别修改和设计材料。基于远程医疗的技术使创建极其敏感和专注的诊断工具是可能的,以增强更好的诊断能力。5,6纳米级传感器和成像工具使早期生物标志物检测成为可能,从而实现了早期的疾病诊断和更好的诊断精度。纳米结构可用于成像程序,例如MRI,CT扫描和分子成像,因为它们的能力是针对特定细胞或区域进行精确靶向的。有针对性的药物输送是远程医疗领域中探索最多的区域。可以包装药物并将其运输到目标部位,并可以直接释放到目标细胞或组织,克服障碍物并最大程度地减少不良影响。有针对性的药物输送方法增加治疗
Sourdough Technology以其在改善质地,风味和主要是小麦和基于黑麦的面包的质量中的作用而闻名。然而,几乎没有报道它在改善全谷物面包中的用途,尤其是关于风味形成,这是一种主要的消费者驱动力。这项研究研究了不同乳酸细菌和酵母启动器联盟对100%燕麦面包的质地和风味所获得的酸面团的影响。选择了四个不同的联盟以获得四个燕麦酸面团,这些燕麦面团经过分析以评估由于不同的发酵代谢而导致的主要特征。酸面团以30%的面团重量添加到面包中。面包质量是通过硬度和体积测量的技术监测的。酸面包较柔软,特异性较高。通过训练有素的面板在感觉实验室条件下评估了酸面团和面包的感觉曲线,并通过HS-SPME-GC-MS分析了挥发性曲线。对于大多数属性,酸面团的强度高于未经处理的对照,尤其是有关酸香气和风味属性。酸面包的强度高于对照面包的酸醋风味和总气味强度,此外,它们的挥发性更高。我们的结果证实,酸味添加可以导致增强的风味,此外,它表明使用不同的乳酸细菌和酵母菌菌株的伴侣会导致质地的改善,并改变了全痛面包的感觉。
超越产品作为盟友,深入了解生物治疗开发的挑战,我们被驱动以完善帮助您提供下一代药物以更快地推销市场的技术。您在每一步都获得了基础并推进科学。Thermo Fisher Scientific还为您提供了我们数十年来策划的卓越服务和应用专业知识。通过充分利用Thermo Scientific Workflow解决方案,您可以将重点放在需要的位置,从而产生积极的影响。
Ref1 0 1,6-HDA 4 \ 2 86 4583.57 54.61 122 5.17 2,2±0,1 79±3 4.6±0,2 ER1 10 1,6-HDA 4 \ 2 91 3437.72 99 4104.29 28.96 108 2.74 2,3±0,1 81±5 4.4±0,2 ER3 30 1,6-HDA 4 \ 2 101 3917.81 25.67 108 108 25.67 108 2.43 2,4±0,1 86±0,1 86±4 4.2±4 4.2±0,2 Ref2 Ref2 Ref2 re 1,9±0,1 61±2 10.2±0,9 ER4 10 Jeff D230 4 \ 2 83 3291.53 17.75 86 1.68 2,0±0,1 66±2 9.6±2 9.6±0,6±0,6 ER5 20 JEFF D230 JEFF D230 JEFF D230 4 \ 2 83 3766.11 16.11 16.45 90 1.56 2,56.56 2,56.56 2,56 2,56 2,56 2.56 2.56 2.56 2,56 2.56 2.56 2.56 2±3 3 3 3 3 3 3 3 3.30,56 2.56 2±3 3 3.30±3 3 3 3 3.30±3 3 3 3 3 3 3 3 3 3 3 3.30,56 2±3 3 3.30±3 3 3.30 @ 0,7 ER6 30 Jeff D230 4 \ 2 80 3522.14 15.90 88 1.51 2,5±0,1 81±4 5.3±0,2 Ref3 0 Jeff D400 4 \ 2 48 3267.29 3260.82 15.00 50 1.42 1,8 ± 0,1 55 ± 2 15.9 ± 0,7 ER8 20 Jeff D400 4\2 58 3798.01 19.48 53 1.85 2,1 ± 0,1 60 ± 3 12.0 ± 0,9 ER9 30 Jeff D400 4\2 55 3934.80 22.86 54 2.17 2,2 ±0,2 76±3 10.2±0,7 Ref4 0 Jeff D230 3 \ 2 53 3661.35 10.33 60 0.98 1,8±0,1 57±2 15.4±0,8 ER10 10 JEFF D230 3 D230 3\2 60 3702.08 13.98 63 1.32 2,2 ± 0,1 66 ± 3 7.7 ± 0,6 ER12 30 Jeff D230 3\2 63 3975.90 14.14 68 1.34 2,3 ± 0,1 76 ± 3 4.5 ± 0,1 Ref5 0 Jeff D230 2\2 34 3336.79 1.86 46 0.18 1,0 ± 0,1 28 ± 1 89.2 ± 5,0 ER13 10 Jeff D230 2\2 33 3555.24 2.87 50 0.27 1,3 ± 0,1 34 ± 1 26.9 ± 0,9 ER14 20 Jeff D230 2\2 34 3795.32 4.95 52 0.47 1,6 ± 0,1 48 ± 1 13.4±0,9 ER15 30 Jeff D230 2 \ 2 39 4341.30 7.65 54 0.72 2,0±0,1 63±2 6.6±0,4
MoBiTec GmbH pCasPP P. polymyxa 基因组编辑载体 本研究 pCasPP-pepFsg1 pepF 靶向敲除质粒不提供修复模板 本研究 pCasPP-pepFsg1-harms pepF 靶向敲除质粒提供修复模板 本研究 pCasPP-pepFsg2-harms pepF 靶向敲除质粒提供修复模板 本研究 pCasPP-pepF-harms 未靶向的 pCasPP 衍生物携带 pepF 同源区 本研究 pCasPP-pepCsg1-harms pepC 靶向敲除质粒提供修复模板 本研究 pCasPP-pepCsg2-harms pepC 靶向敲除质粒提供修复模板 本研究 pCasPP-pepJsg1-harms pepJ 靶向敲除质粒提供修复模板 本研究 pCasPP-pepJsg2-harms pepJ 靶向敲除质粒提供修复模板 本研究 pCasPP-ugdH1sg1-harms ugdH1 靶向敲除质粒提供修复模板 本研究 pCasPP-ugdH1sg2-harms ugdH1 靶向敲除质粒提供修复模板 本研究 pCasPP-manCsg1-harms manC 靶向敲除质粒提供修复模板 本研究 pCasPP-manCsg2-harms manC 靶向敲除质粒提供修复模板 本研究 pCasPP-clugBlock-harms 多重 pCasPP 变体,同时靶向两个不同位点,用于敲除 18 kb 片段;提供同源区域