平面微电极阵列(MEAS) - 体外或体内 - 神经元信号记录缺乏对神经网络功能和突触可变性的详细理解所需的空间分辨率和功能的信号噪声比(SNR)。为了克服这些局限性,将高度可定制的三维(3D)打印过程与薄膜技术结合使用,并使用自动对准模板辅助的电化学沉积工艺来制造基于3D打印的衡量标准,以基于STI效率或灵活的底物。显示具有设计灵活性和身体鲁棒性的设备用于记录不同体外和体内应用中的神经活动,可实现高高度比率3D微电极高达33:1。在这里,测量在3D神经元培养物,视网膜外植体和活小鼠皮层中成功记录神经活动,从而证明了3D MEA的多功能性,同时保持高质量的神经记录。可自定义的3D MEA为在常规或各种病理状况下(体外和体内)研究神经活动提供了独特的机会,并有助于药物筛查和神经调节系统的开发,这些系统可以准确地监测大型神经网络的活性。
Thomas Pany 教授就职于慕尼黑联邦国防军大学 (UniBw M) 的空间系统研究中心 (FZ SPACE),负责领导空间技术与空间应用研究所 (ISTA) 的卫星导航单元 LRT 9.2。他教授的导航课程侧重于 GNSS、传感器融合和航空航天应用。在 LRT 9.2 中,有十几名全职研究人员研究 GNSS 系统和信号设计、GNSS 收发器和高完整性多传感器导航(惯性、激光雷达),并且还在开发模块化无人机 GNSS 测试平台。ISTA 还开发了 MuSNAT GNSS 软件接收器,最近专注于智能手机定位和 GNSS/5G 集成。他拥有格拉茨技术大学 (sub auspiciis) 的博士学位,并在 GNSS 行业工作了七年。他撰写了约 200 篇出版物,其中包括一本专著,并获得了美国导航研究所颁发的五项最佳演讲奖。Thomas Pany 还组织了慕尼黑卫星
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2024年8月19日发布。 https://doi.org/10.1101/2024.08.19.608611 doi:Biorxiv Preprint
1英国牛津大学工程科学系生物医学工程研究所,英国牛津大学3PJ; joel.balkaran@seh.ox.ac.uk(J.P.R.B.); darcy.dunn lawless@magd.ox.ac.uk(d.d.-l.); veronica.lucian@st-hildas.ox.ac.uk(v.l。); sara.keller@eng.ox.ac.uk(S.B.K.); luna.hu@bnc.ox.ac.uk(L.H.); jeffrey.rubasingham@eng.ox.ac.uk(J.R.); malavika.nair@eng.ox.ac.uk(M.N。); robert.carlisle@eng.ox.ac.uk(R.C.); eleanor.stride@eng.ox.ac.uk(E.S.); michael.gray@eng.ox.ac.uk(M.G。)2骨质研究中心,NUF领域,流变学和肌肉骨骼科学系(NDORMS),牛津大学,牛津大学,牛津大学OX1 3PJ,英国; colm.oreilly@ndorms.ox.ac.uk *通信:brian.lyons@eng.ox.ac.uk(B.L.); constantin.coussios@eng.ox.ac.uk(c.c.)†这些作者为这项工作做出了同样的贡献。
利益冲突披露:拉图尔博士报告说,在提交的工作之外收到了Target RWE和Amgen,Inc的咨询费。佩特博士报告说,在研究过程中,国家老化研究所和国家前进的转化科学中心获得了赠款。Stürmer博士报告说,在北卡罗来纳州北卡罗来纳州迁移和临床科学研究所的比较有效性研究总监,北卡罗来纳大学(UNC UNC)临床和转化科学奖的北卡罗来纳州翻译和临床科学研究所的比较有效性研究总监中,已提交的工作和工资支持以外收到股票。来自制药公司(Novo Nordisk)的Boehringer Ingelheim,Astellas和Sarepta),以及来自Nancy A. Dreyer博士对流行病学系的慷慨贡献,UNC在Chapel Hill。Stürmer博士报告说,在诺华,罗氏和诺沃斯诺迪斯特拥有股票。 Jonsson博士报告称,通过与Abbvie,Astellas,Boehringer Ingelheim,GSK,GSK,GSK,Sarepta,Sarepta,Sarepta,Theeda和UCB Bioscience和UCB Biocter委员会成员的临时委员GSK发票并付给了UNC Chapel Hill,以及Epidivian的流行病学和临床顾问委员会成员。 Jensen博士报告说,为α-1肾上腺素能受体激动剂疗法发布了11,213,514 B2的专利。 没有其他披露报告。Stürmer博士报告说,在诺华,罗氏和诺沃斯诺迪斯特拥有股票。Jonsson博士报告称,通过与Abbvie,Astellas,Boehringer Ingelheim,GSK,GSK,GSK,Sarepta,Sarepta,Sarepta,Theeda和UCB Bioscience和UCB Biocter委员会成员的临时委员GSK发票并付给了UNC Chapel Hill,以及Epidivian的流行病学和临床顾问委员会成员。Jensen博士报告说,为α-1肾上腺素能受体激动剂疗法发布了11,213,514 B2的专利。没有其他披露报告。
快速的技术发展使用户能够在决策过程中得到支持和指导。其中一个例子是,高等院校的学生能够利用技术探索不同的职业选择,并就自己的未来做出明智的决定。尽管技术的使用总体上越来越广泛,但南非的职业指导和个性化职业推荐技术仍然有限。存在一些限制因素,例如技术使用有限、语言障碍和农村地区普遍存在的文化差异等迫在眉睫的挑战。基于这一前提,本研究收集了南非东开普大学学生的定量数据,学生参与了他们如何在职业选择过程中使用人工智能工具和技术。该研究强调了对南非大学生(尤其是农村地区的大学生)更有效、更符合文化的定制化、本地化的工作评估系统的需要。参与者更愿意参与、参与并提出他们对已开发的职业选择的建议,因为目前的职业选择并不完全符合他们的背景。具有人工智能 (AI) 功能的量身定制的职业指导解决方案更有可能被目标用户采用和使用。
简介:出生的孩子(副总裁)仍然有神经发育障碍的风险。大脑生长和损伤的模式,以及如何缓解VP婴儿的发育风险的早期神经瘤疗法如何保持不足。方法:这是对妊娠32周之前/之前出生的VP婴儿的前瞻性队列研究。该研究将在III级NICU中招募n = 75个连续出生的VP婴儿。暴露的婴儿将根据注册早期脑磁共振成像(MRI)的神经损伤程度分为两组(第1组:低风险,n = 25或第2组:高风险,n = 25)。婴儿中的在不明显的伤害下定义为脑室内出血,随着扩张,中度或重度白质损伤或小脑出血而受到神经发育的影响,可以利用更多的NICU感官体验(感觉),同时获得了更多的NICU SENSIDENT(同时),同时获得了更多的NICUS型群体(同时)支持(Sense-Plus)。 特定年龄的,量身定制的感官体验将由婴儿的NICU员工的教练提供促进的,优先的,优先。 暴露组中的 VP婴儿将每2周从入学人数到期限等效,以监测脑生长和损伤的演变。 将与参考组(第3组:n = 25)进行比较,即 VP婴儿的家庭在有意义的最初入学率下降,随后出于其他目的而经历了术语等效的大脑MRI。在不明显的伤害下定义为脑室内出血,随着扩张,中度或重度白质损伤或小脑出血而受到神经发育的影响,可以利用更多的NICU感官体验(感觉),同时获得了更多的NICU SENSIDENT(同时),同时获得了更多的NICUS型群体(同时)支持(Sense-Plus)。特定年龄的,量身定制的感官体验将由婴儿的NICU员工的教练提供促进的,优先的,优先。VP婴儿将每2周从入学人数到期限等效,以监测脑生长和损伤的演变。将与参考组(第3组:n = 25)进行比较,即VP婴儿的家庭在有意义的最初入学率下降,随后出于其他目的而经历了术语等效的大脑MRI。这项研究的主要目的是与接受护理标准的VP婴儿相比,接受了基于NICU的神经多性干预措施的VP婴儿的学期等效脑生长和发育表征。次要目的包括定义与Total
我们经验丰富的设计团队可以为您最苛刻的电子封装挑战提供高质量的解决方案。ISI 的设计专业知识与数十年的制造工艺和测试开发经验相得益彰,确保我们生产出高可靠性、小型化和坚固耐用的微电子模块,以满足您的特定要求。
摘要。糖尿病是一种慢性代谢疾病,通常与诸如心脏疾病,肾病和神经病等并发症有关,其发病率每年都在增加。转录因子Forkhead Box M1(FOXM1)在糖尿病及其并发症的发展中起重要作用。本研究旨在回顾FOXM1与糖尿病发病机理及其并发症之间的关联。FOXM1可能通过调节细胞生物学过程,例如细胞周期,DNA损伤修复,细胞分化和上皮 - 间质转变来参与糖尿病的发育和发展及其并发症。FOXM1参与了胰岛素分泌和胰岛素抵抗的调节,FOXM1通过调节胰岛素相关基因和信号传导途径的表达来影响胰岛素分泌。 FOXM1参与糖尿病的炎症反应,FOXM1可以调节与炎症反应和免疫细胞相关的关键基因,从而影响炎症反应的发生和发展;最后,FOXM1参与了糖尿病并发症的调节,例如心血管疾病,肾病和神经病。总之,转录因子FOXM1在糖尿病的发育及其并发症中起重要作用。未来的研究应探讨FOXM1在糖尿病中的机制,并找到FOXM1的新靶标作为对糖尿病及其并发症的潜在治疗方法。
摘要:rhamnolipid(RL)可以抑制大肠杆菌O157:H7的生物膜形成,但关联机制仍然未知。我们在这里对用RL和未经处理的培养物处理的培养物进行了比较生理和转录分析,以阐明RL可能抑制大肠杆菌O157:H7中生物FM形成的潜在机制。抗生物膜测定法显示,用0.25-1 mg/ml的RL处理抑制了超过70%的大肠杆菌O157:H7生物膜形成能力。细胞水平的生理分析表明,高浓度的RL显着降低了外膜的疏水性。大肠杆菌细胞膜完整性和渗透性也受到RL的显着影响,这是由于细胞膜脂多糖(LPS)的释放增加。此外,与未经处理的细胞相比,在用RL处理的细胞中,转录组促进显示了2601个差异表达的基因(1344个上调和1257个下调)。功能富集分析表明,RL治疗负责负责LPS合成,外膜外蛋白合成和型脂肪组装以及型多N-乙酰基 - 葡萄糖胺生物合成和基因所需的下调基因。总而言之,RL处理抑制了大肠杆菌O157:H7生物膜形成,通过修饰关键的外膜表面特性和粘附基因的表达水平。