最近的IT基础设施攻击激增促使人们对数字供应链内的网络安全的关注更加重视。自2018年以来,美国国家标准技术研究所(NIST)报告说,固件攻击增加了500%。1 NIST最近还发布了许多文档,强调了将硬件,软件和固件作为强大网络安全计划的基础元素的重要性。为了减轻这些风险,有60%的供应链管理领导者计划在2025年之前在业务决策中优先考虑网络安全风险。2
在2025年3月2日的一周中,与上一周相比,总革命借记卡支出增长了9%,而与2024年的同等年相比,雷神借记卡的支出增加了5%;在最近一周的支出上升最大的是服务业(35%)和公用事业领域(16%),而最大的跌倒是在娱乐和餐厅行业中,那里的支出下降了4%(Revolut)。
摘要:最近的声学遥测定位系统能够以几厘米至几米的规模重建生物体的位置和轨迹。但是,它们提出了几种后勤约束,包括接收器维护,校准程序和对实时数据的访问有限。我们在这里提出了一种基于到达的时间差异(TDOA)算法和全球移动(GSM)通信技术的新颖,易于人才,能量自我的水下定位系统,能够实时找到标记的海洋生物体。我们使用在鱼和底栖无脊椎动物中使用连续和编码标签的经验示例来说明该系统的应用。对操作系统的原位实验测试表现出与当前可用的声学定位系统相似的性能,全球定位误差为7.13±5.80 m(平均值±SD),三分之一的pINGS可以定位在远距离浮标的278 m内。尽管需要进行一些改进,但该原型的设计为自主,可以在各种环境(河流,湖泊和海洋)中从表面部署。事实证明,这对于实时监测各种物种(底栖和全骨)很有用。其实时属性可用于快速检测系统故障,优化部署设计或生态或保护应用。
抽象的智能移动性和自动驾驶汽车(AV),必须非常精确地了解环境,以保证可靠的决策,并能够将公路部门获得的结果扩展到铁路等其他领域。为此,我们基于Yolov5引入了一个新的单阶段单眼3D对象检测卷积神经网络(CNN),该卷积神经网络(CNN)致力于公路和铁路环境的智能移动性应用。要执行3D参数回归,我们用混合锚盒替换了Yolov5的锚点。我们的方法有不同的模型大小,例如yolov5:小,中和大。我们提出的新模型已针对实时嵌入DED约束(轻巧,速度和准确性)进行了优化,该模型利用了被分裂注意的改进(SA)卷积所带来的改进(称为小型分裂注意模型(SMALL-SA)。为了验证我们的CNN模型,我们还通过利用视频游戏Grand Theft Auto V(GTAV)来引入一个新的虚拟数据集,以针对道路和铁路环境。我们在Kitti和我们自己的GTAV数据集上提供了不同模型的广泛结果。通过我们的结果,我们证明了我们的方法是最快的3D对象检测,其准确性结果接近Kitti Road数据集上的最新方法。我们进一步证明,GTAV虚拟数据集上的预训练过程提高了实际数据集(例如Kitti)的准确性,从而使我们的方法比最先进的方法获得了更高的准确性,该方法具有16.16%的3D平均均衡性精度,而硬CAR检测的推理时间为11.1 MS/rtx 3080 gpu的推理时间为11.1 s/simage。
研究人员正在探索人类在识别和区分计算机化目的的情绪方面的出色技能。尽管面部情绪预测具有广泛的实际应用,但由于其对主观因素的依赖,它仍然是一个充满挑战的研究领域。尽管年龄和阻塞,但在本研究中提出了平衡所有基本面部情绪的预测方法。利用合奏分类器的实时面部情感预测的方法,将深CNN模型纳入了主要的基本分类器,同时解决了不平衡数据集的问题。通过图像扩展方法,CK+和JAFFE数据集可以合成增强。在2级使用多数和相对投票技术组合的元分类剂,以提高单个情绪的精度。使用Internet随机选择的面部表达图像对所提出的方法进行了测试,证明了总体准确性提高。此外,使用拟议的集合融合方法,对FER2013数据集进行了交叉验证。
最近已经显示,急性应力影响大型大脑网络之间的神经资源分配,尤其是执行控制网络和显着网络之间的平衡。对这种动态资源重新分配过程的适应性被认为在与压力相关的PSY-CHOPALOGY中起主要作用,这表明应力弹性可以通过在这两个网络之间自适应地重新分配神经资源的保留能力来确定。积极训练这种能力可能是增加患有与压力相关的症状学风险的个体的弹性的潜在有前途的方法。使用实时功能磁共振成像,当前的研究研究了个人是否可以学会自我调节与压力相关的大规模网络平衡。参与者参与了双向和隐式实时fMRI神经反馈范式,其中间歇性地向他们提供了视觉表示显着性和执行控制网络平均激活和执行控制网络之间的差异信号,并试图自我调节该信号。Our results show that, given feedback about their performance over three training sessions, participants were able to (1) learn strategies to differentially control the balance between SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect of a mild electric stimulation.当前的研究构成了基于与压力相关的大规模网络平衡的神经反馈培训的第一大成功证明 - 一种新颖的方法,一种新的方法有可能培训对现实生活中压力源的中心反应的控制,并可能为未来的临床干预措施奠定基础,以促进越来越多的弹性。
摘要:本文介绍了基于能源互联网(IOE)的实时家庭能源管理系统的新型调度方案。该方案是一种多代理方法,它考虑了两个主要目的,包括用户满意度和能源消耗成本。该方案是在微电网环境下设计的。用户在节省能源成本方面的影响通常在系统效率方面显着。这就是为什么国内用户参与国内电器管理的原因。优化算法基于降雨算法和SALP群算法的改进版本。在本文中,提出了使用时间(TOU)模型来定义肩膀峰和峰值小时的速率。一个两级通信系统将MATLAB中实现的微电网系统连接到云服务器。本地通信级别利用IP/TCP和MQTT,用作全球通信级别的协议。通过使用SALP群算法和通过使用降雨算法,通过使用SALP群算法和节省31.335%的调度控制器成功节省了25.3%的能源。
磁轴承的模拟涉及高度非线性物理,对输入变化高度依赖。此外,在使用经典计算方法时,在现实的计算时间内,这种模拟是耗时而无法运行的。另一方面,经典模型还原技术无法在允许的计算窗口内实现所需的精度。为了解决这种复杂性,这项工作提出了基于物理的计算方法,模型还原技术和机器学习算法的组合,以满足要求。用于表示磁性轴承的物理模型是经典的Cauer梯子网络方法,而模型还原技术是在物理模型解决方案的误差上应用的。后来,在潜在空间中,机器学习算法用于预测潜在空间中校正的演变。结果显示了解决方案的改进,而不会稀释计算时间。该解决方案是几乎实时计算的(几毫秒),并将其与有限的元素参考解决方案进行了比较。关键字:光谱法,减少基础,机器学习,磁性轴承,磁悬浮,长期术语记忆