焊接过程产生的图像噪声(例如弧光,飞溅和烟雾)给基于激光视觉传感器的焊接机器人带来了巨大的挑战,可以定位焊接接缝并准确地进行自动焊接。当前,基于深度学习的方法超过了灵活性和鲁棒性的传统方法。但是,它们的重大计算成本导致与自动焊接的实时要求不匹配。在本文中,我们对卷积神经网络(CNN)和变压器的有效混合体系结构(称为动态挤压网络(DSNET))进行实时焊接接缝分段。更准确地说,开发了一个轻巧的分割框架,以充分利用变压器结构的优势,而无需显着增加计算开销。在这方面,旨在提高其功能多样性的高效编码器已被设计并导致了编码性能的大幅改进。此外,我们提出了一个插件轻巧的注意模块,该模块通过利用焊接接缝数据的统计信息并引入线性先验来产生更有效的注意力权重。使用NVIDIA GTX 1050TI对焊缝图像进行广泛的实验表明,与基线方法Transunet相比,我们的方法将参数的数量减少了54倍,将计算复杂性降低了34倍,并将推理速度提高33倍。dsnet可实现较高的准确性(78.01%IOU,87.64%骰子)和速度性能(100 fps),其模型复杂性和计算负担较低。该代码可在https://github.com/hackerschen/dsnet上找到。
摘要 - 在自动移动和机器人系统的感知框架内,对Lidars通常生成的3D点云的语义分析是许多应用程序的关键,例如对象检测和识别以及场景重建。场景语义分割可以通过将3D空间数据与专门的深神经网络直接整合在一起来实现。尽管这种类型的数据提供了有关周围环境的丰富几何信息,但它也提出了许多挑战:其非结构化和稀疏性质,不可预测的规模以及苛刻的计算要求。这些特征阻碍了实时半分析,尤其是在资源受限的硬件 - 构造方面,构成了许多机器人应用的主要计算组件。因此,在本文中,我们研究了各种3D语义分割方法,并分析了其对嵌入式NVIDIA JETSON平台的资源约束推断的性能和能力。我们通过标准化的培训方案和数据增强进行了公平的比较,为两个大型室外数据集提供了基准的结果:Semantickitti和Nuscenes。
摘要 - 视频游戏和虚拟现实体验中虚拟角色的示威行为是现实主义和沉浸式的关键因素。的确,目光在与环境互动时扮演着许多角色。它不仅表明了角色在看什么,而且在言语和非语言行为以及使虚拟字符还活着中起着重要作用。凝视行为的自动计算是一个具有挑战性的问题,迄今为止,现有方法都无法在交互式环境中产生近实现的结果。 因此,我们提出了一种新型方法,该方法利用了与视觉显着性,注意力机制,accadic行为建模和头部凝视动画技术有关的几个不同领域的最新进展。 我们的方法阐明了这些进步,以收敛于多映射显着驱动的模型,该模型为非交流字符提供实时现实的凝视行为,以及与可自定义功能相比,其他用户控制,以构成各种各样的结果。 我们首先通过客观评估评估我们的方法的好处,该评估使用专门为此目的获得的眼睛跟踪数据集面对地面真理数据面对我们的视线模拟。 然后,与从真实演员捕获的凝视动画相比,我们依靠主观评估来衡量我们方法产生的凝视动画的现实水平。 我们的结果表明,我们的方法会生成视力行为,这些行为无法与捕获的凝视动画区分开。凝视行为的自动计算是一个具有挑战性的问题,迄今为止,现有方法都无法在交互式环境中产生近实现的结果。因此,我们提出了一种新型方法,该方法利用了与视觉显着性,注意力机制,accadic行为建模和头部凝视动画技术有关的几个不同领域的最新进展。我们的方法阐明了这些进步,以收敛于多映射显着驱动的模型,该模型为非交流字符提供实时现实的凝视行为,以及与可自定义功能相比,其他用户控制,以构成各种各样的结果。我们首先通过客观评估评估我们的方法的好处,该评估使用专门为此目的获得的眼睛跟踪数据集面对地面真理数据面对我们的视线模拟。然后,与从真实演员捕获的凝视动画相比,我们依靠主观评估来衡量我们方法产生的凝视动画的现实水平。我们的结果表明,我们的方法会生成视力行为,这些行为无法与捕获的凝视动画区分开。总的来说,我们认为这些结果将为实时应用程序的现实和连贯凝视动画的更自然和直观设计开辟道路。
愿景,深度学习以及机器人和其他技术学,可能有助于减轻对更可持续的农业系统的需求。但是,传统的工业机器人不是为典型农业生态系统的复杂环境而设计的。农业领域中最关键的害虫控制问题之一是杂草控制,这是目前是一项劳动力的任务。因此,自动化杂草控制系统的需求很大。蔬菜场中的机器人内部杂草控制需要机器视觉,作物定位,决策和代理系统。缺乏可靠的技术来检测,定位和分类杂草和作物植物是开发针对特种蔬菜等特种耕作的完全自动化和全面的杂草管理系统的主要技术障碍。在杂草密度中等至高杂草密度的杂草田中,现有的机器人除草机变得混乱,因为它们无法解释过去的几十年,研究人员一直在尝试各种方法来实时区分杂草的杂草 - 杂草 - 杂草浓度。Lee等。 (1999)提出并开发了一个实时机器视觉系统,该系统以3 fps的速度区分了番茄植物和杂草,代表114毫米101毫米的种子线面积,允许杂草控制系统以1.20 kmh 1的速度传播。 番茄植物在75.8%的时间内正确识别,低于所需的准确性。 Lamm等。 (2002)开发了一种基于Lee El al的棉花的精确杂草映射的系统。 Slautter等。Lee等。(1999)提出并开发了一个实时机器视觉系统,该系统以3 fps的速度区分了番茄植物和杂草,代表114毫米101毫米的种子线面积,允许杂草控制系统以1.20 kmh 1的速度传播。番茄植物在75.8%的时间内正确识别,低于所需的准确性。Lamm等。(2002)开发了一种基于Lee El al的棉花的精确杂草映射的系统。Slautter等。的(1999)原型,并达到了88%的歧视精度。(2008)开发了一种多光谱的机器视觉识别系统,以对杂草的生菜作物分类,并获得90.3%的精度。Haff等。 (2011年)后来提出了一个基于X射线的作物检测系统,该系统达到了90.7%的tomatoplantsatthetthervavel speedof1.6kmh 1的检测准确性。 zhangetal。 (2012)提出了一种高光谱成像系统,以实时识别作物植物并将其与杂草区分开。 该系统在区分杂草的作物方面达到了95.8%的准确性。 有许多关于AI,机器学习,深度学习技术的研究工作,以对杂草进行分类(Bah等,2018; Osorio等,2020)。 Osorio等。 (2020)使用多光谱摄像机在生菜场和应用的SVM(支撑矢量机),Yolov3(您只看一次V3)和掩盖r e cnn(基于区域的综合神经网络)中的图像,以在杂草和作物之间进行分类,并在79%,89%,89%,89%,89%,89%,89%,89%,89%的差异Haff等。(2011年)后来提出了一个基于X射线的作物检测系统,该系统达到了90.7%的tomatoplantsatthetthervavel speedof1.6kmh 1的检测准确性。zhangetal。(2012)提出了一种高光谱成像系统,以实时识别作物植物并将其与杂草区分开。该系统在区分杂草的作物方面达到了95.8%的准确性。有许多关于AI,机器学习,深度学习技术的研究工作,以对杂草进行分类(Bah等,2018; Osorio等,2020)。Osorio等。(2020)使用多光谱摄像机在生菜场和应用的SVM(支撑矢量机),Yolov3(您只看一次V3)和掩盖r e cnn(基于区域的综合神经网络)中的图像,以在杂草和作物之间进行分类,并在79%,89%,89%,89%,89%,89%,89%,89%,89%的差异
摘要 - 在高分辨率事件摄像机的能力驱动的基于事件的视觉中的突破,具有显着改善的人类机器人相互作用。事件摄像机在管理动态范围和运动模糊方面表现出色,无缝适应各种环境条件。本文提出的研究利用这项技术开发了能够解释手势进行精确机器人控制的直觉机器人指导系统。我们介绍了“ Eb Handgesture”数据集,这是一种与我们的网络“ Convrnn”结合使用的创新高分辨率手势数据集,以在解释任务中证明95.7%的值得称赞的精度,涵盖了不同照明场景中的六种手势类型。为了验证我们的框架,使用ARI机器人进行了现实生活实验,从而确认了在各种相互作用过程中训练有素的网络的有效性。这项研究代表了确保共享工作空间中更安全,更可靠,更有效的人类机器人协作的实质性飞跃。索引术语 - 基于现实的手势识别,机器人控制,手势数据集
摘要:在许多新兴技术中,电池电动汽车(BEV)已成为对严格排放法规的突出和高度支持的解决方案。尽管受欢迎程度越来越大,但可能会危害其进一步传播的主要挑战是缺乏充电基础设施,电池寿命降级以及实际和有望的全电动驾驶范围之间的差异。本文的主要重点是制定综合能量和热舒适管理(IETM)策略。此策略可最佳地管理供暖,通风和空调(HVAC)单元所需的电能,这是电池负荷上最受影响的辅助设备,以最大程度地减少电池寿命在任何特定的驱动循环中的降解,同时确保实际的机舱温度徘徊在允许的公寓内悬停在参考机舱温度中允许的公寓温度限制内,并且驾驶员的驾驶员启动了驱动器,并始终启动。这项工作结合了健康(SOH)估计模型,高保真舱室热力学模型以及HVAC模型的市售BEV的前向示例模拟模型,以展示提出的增强电池寿命的IETM IETM策略的效果和功效。IETM的瞬时优化问题是通过利用目标函数凸度的黄金搜索方法来解决的。在不同的驾驶场景下进行的模拟结果表明,提议的物品控制器带来的改进可以将电池健康降解最大化高达4.5%,能源消耗量最高2.8%,同时将机舱温度偏差保持在允许的范围内,从而在允许的限制范围内与参考温度保持一致。
摘要:汽车行业中的人工智能(AI)允许汽车制造商通过整合AI驱动的高级驾驶员辅助系统(ADAS)和/或自动化驾驶系统(ADS)(例如Traffiffififififient识别(TSR)系统),从而为智能和自动驾驶汽车提供智能和自动驾驶汽车。现有的TSR解决方案集中在他们认识的某些标志上。出于这个原因,提出了一种TSR方法,其中涵盖了更多的道路标志类别,例如警告,监管,强制性和优先符号,以构建一个智能和实时系统,能够分析,检测和分类为正确类别。提出的方法基于对不同的特征符号检测(TSD)和Traffim符号分类(TSC)的概述,旨在在准确性和处理时间方面选择最佳的特征。因此,提出的方法将HAAR级联技术与深CNN模型分类结合在一起。开发的TSC模型在GTSRB数据集上进行了培训,然后在各种路标上进行了测试。所达到的测试精度率达到98.56%。为了提高分类性能,我们提出了一个新的基于注意力的深卷积神经网络。由于获得的测试准确性和F1测量率分别达到99.91%和99%,因此所达到的结果比其他符号分类研究中存在的结果更好。在Raspberry Pi 4板上评估并验证了开发的TSR系统。实验结果证实了建议的方法的可靠性。
(国家电网新区域电源公司,Xiongan新区域071600,中国)摘要:边缘设备和输电线路智能检查的组合可以满足重新的需求 -
|摘要该检查研究了使用深刻学习方法的使用,即明确利用卷积脑组织(CNN),以持续识别道路驾驶情况中的车辆和路径限制。该研究通过利用一个包括由各种传感器捕获的注释帧,包括相机,激光雷达,雷达,雷达和GPS捕获的带注释的框架,调查了对CNN体系结构的修改性能。该框架在识别车辆和预期3D的路径形状方面表现出诚意,同时在不同的GPU设置上完成10 Hz以北的功能率。车辆边界盒预测具有很高的精度,对遮挡的阻力和有效的车道边界识别是关键发现。安静,探索强调了该框架在独立驾驶空间中的可能物质性,为该领域的未来改进带来了有前途的道路。
基于快速阻抗测量的电池实时健康状态诊断的开发 / Locorotondo E.;Cultrera V.;Pugi L.;Berzi L.;Pierini M.;Lutzemberger G.。- 在:JOURNAL OF ENERGY STORAGE。- ISSN 2352-152X。- ELETTRONICO。- 38:(2021),第 1-12 页。[10.1016/j.est.2021.102566]